ETA-Danmark A/S Kollegievej 6 DK-2920 Charlottenlund Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk

Authorised and notified according to Article 10 of the Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products

MEMBER OF EOTA

European Technical Approval ETA-12/0114

This ETA replaces the previous ETA with the same number and validity from 2012-07-17 to 2017-07-17

Trade name: SPAX self-tapping screws

Holder of approval: SPAX International GmbH & Co. KG

Kölner Strasse 71-77 DE-58256 Ennepetal Tel. +49 23 33799-0 Fax + 49 23 33799-199 Internet www.spax.com

Generic type and use of construction product:

Self-tapping screws for use in timber structures

Valid from: 2012-09-05 to: 2017-07-17

Manufacturing plant: SPAX International GmbH & Co. KG

Kölner Strasse 71-77 DE-58256 Ennepetal

This European Technical Approval contains:

84 pages including 6 annexes which form an integral part of the document

I LEGAL BASIS AND GENERAL CONDITIONS

- This European Technical Approval is issued by ETA-Danmark A/S in accordance with:
- Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹⁾, as amended by Council Directive 93/68/EEC of 22 July 1993²⁾.
- Bekendtgørelse 559 af 27-06-1994 (afløser bekendtgørelse 480 af 25-06-1991) om ikrafttræden af EF direktiv af 21. december 1988 om indbyrdes tilnærmelse af medlemsstaternes love og administrative bestemmelser om byggevarer.
- Common Procedural Rules for Requesting, Preparing and the Granting of European Technical Approvals set out in the Annex to Commission Decision 94/23/EC³⁾.
- 2 ETA-Danmark A/S is authorized to check whether the provisions of this European Technical Approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European Technical Approval and for their fitness for the intended use remains with the holder of the European Technical Approval.
- This European Technical Approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European Technical Approval.
- 4 This European Technical Approval may be withdrawn by ETA-Danmark A/S pursuant to Article 5(1) of Council Directive89/106/EEC.

- 5 Reproduction of this European Technical Approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of ETA-Danmark A/S. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European Technical Approval.
- 6 This European Technical Approval is issued by ETA-Danmark A/S in English. This version corresponds fully to the version circulated within EOTA. Translations into other languages

have to be designated as such.

- 1) Official Journal of the European Communities N° L40, 11 Feb 1989, p 12.
- 2) Official Journal of the European Communities Nº L220, 30 Aug 1993, p 1.
- 3) Official Journal of the European Communities N° L 17, 20 Jan 1994, p 34.

II SPECIAL CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

Definition of the product

SPAX screws are self-tapping screws to be used in timber structures. They shall be threaded over a part or over the full length. SPAX threaded rods shall be threaded over the full length. The screws shall be produced from carbon steel wire for nominal diameters of 2,5 mm to 12,0 mm and from stainless steel wire for nominal diameters of 3,0 mm to 12,0 mm. SPAX threaded rods shall be produced from carbon steel wire or from stainless steel wire for a nominal diameter of 16,0 mm. Where corrosion protection is required, the material or coating shall be declared in accordance with the relevant specification given in Annex A of EN 14592.

Geometry and Material

The nominal diameter (outer thread diameter), d, of SPAX screws shall not be less than 2,5 mm and shall not be greater than 12,0 mm. The nominal diameter of SPAX threaded rods is 16 mm. The overall length of the screws, ℓ , shall not be less than 12 mm and shall not be greater than 800 mm. The overall length of the threaded rods, ℓ , shall not be greater than 3000 mm. Other dimensions are given in Annex A.

The ratio of inner thread diameter to outer thread diameter d_i /d ranges from 0,58 to 0,68.

The screws are threaded over a minimum length ℓ_g of 4·d (i.e. $\ell_\sigma \ge 4$ ·d).

The lead p (distance between two adjacent thread flanks) ranges from 0,49·d to 0,61·d.

No breaking shall be observed at a bend angle, α , of less than $(45/d^{0.7}+20)$ degrees.

Intended use

The screws and threaded rods are used for connections in load bearing timber structures between members of solid timber, glued laminated timber, cross-laminated timber, and laminated veneer lumber, similar glued members, woodbased panels or steel. SPAX screws with a thread over the full length and SPAX threaded rods are also used as tensile or compressive reinforcement perpendicular to the grain or as shear reinforcement.

Furthermore SPAX screws with diameters between 6 mm and 12 mm may also be used for the fixing of Thermal insulation material on rafters.

Steel plates and wood-based panels except solid wood panels, laminated veneer lumber and cross laminated timber shall only be located on the side of the screw head. The following wood-based panels may be used:

- Plywood according to EN 636 or European Technical Approval or national provisions that apply at the installation site
- Particleboard according to EN 312 or European Technical Approval or national provisions that apply at the installation site
- Oriented Strand Board according to EN 300 or European Technical Approval or national provisions that apply at the installation site
- Fibreboard according to EN 622-2 and 622-3 or European Technical Approval (minimum density 650 kg/m³) or national provisions that apply at the installation site
- Cement bonded particleboard according to EN 634 or European Technical Approval or national provisions that apply at the installation site
- Solid wood panels according to EN 13353 and EN 13986 or European Technical Approval or national provisions that apply at the installation site
- Cross laminated timber according to European Technical Approval
- Laminated Veneer Lumber according to EN 14374 or European Technical Approval
- Engineered wood products according to European Technical Approval if the ETA of the product includes provisions for the use of self-tapping screws, the provisions of the ETA of the engineered wood product apply

The screws shall be driven into softwood without predrilling or after pre-drilling with a diameter not larger than the inner thread diameter for the length of the threaded part and with a maximum of the smooth shank diameter for the length of the smooth shank. The threaded rods shall be driven into softwood after pre-drilling with the following diameters:

Threaded rod 16 mm Pre-drilling diameter 13 mm

Threaded rod shall only be driven into pre-drilled holes.

The screws or threaded rods are intended to be used in timber connections for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106/EEC shall be fulfilled.

The design of the connections shall be based on the characteristic load-carrying capacities of the screws. The design capacities shall be derived from the characteristic capacities in accordance with Eurocode 5 or an appropriate national code.

The screws or threaded rods are intended for use for connections subject to static or quasi static loading.

The scope of the screws regarding resistance to corrosion shall be defined according to national provisions that apply at the installation site considering environmental conditions. Section 2.7 of this ETA contains the corrosion protection for SPAX screws made from carbon steel and the material number of the stainless steel.

Assumed working life

The assumed intended working life of the screws for the intended use is 50 years, provided that they are subject to appropriate use and maintenance.

The information on the working life should not be regarded as a guarantee provided by the manufacturer or the approval body issuing the ETA. An "assumed intended working life" means that it is expected that, when this working life has elapsed, the real working life may be, in normal use conditions, considerably longer without major degradation affecting the essential requirements.

2 Characteristics of product and assessment Characteristic

	Characteristic	Assessment of characteristic			
2.1 Mecha	anical resistance and stability*)				
2.1.1	Tensile strength Screws made of carbon steel Threaded rods made of carbon steel or stainless steel	Characteristic value $f_{tens,k}$: d = 2,5 mm: d = 3,0 mm: d = 3,5 mm: d = 4,0 mm: d = 4,5 mm: d = 5,0 mm: d = 6,0 mm: d = 6,0 mm: d = 8,0 mm: d = 8,0 mm: d = 10,0 mm: d = 12,0 mm:	2,0 kN 2,8 kN 3,8 kN 5,0 kN 6,4 kN 7,9 kN 11 kN 13 kN 17 kN 28 kN 38 kN		
	Screws made of stainless steel	d = 3,0 mm: d = 3,5 mm: d = 4,0 mm: d = 4,5 mm: d = 5,0 mm: d = 6,0 mm: d = 7,0 mm: d = 8,0 mm: d = 10,0 mm: d = 12,0 mm:	2,1 kN 2,9 kN 3,8 kN 4,2 kN 4,9 kN 7,1 kN 10 kN 13 kN 20 kN 28 kN		
2.1.2	Insertion moment	Ratio of the characteristic torsional strength to the mean insertion moment: $f_{tor,k} \ / \ R_{tor,mean} \ge 1,5$			
2.1.3	Torsional strength Screws made of carbon steel	Characteristic value $f_{tor,k}$: d = 2,5 mm: d = 3,0 mm: d = 3,5 mm: d = 4,0 mm: d = 4,5 mm: d = 5,0 mm: d = 6,0 mm: d = 7,0 mm: d = 8,0 mm: d = 10,0 mm: d = 12,0 mm:	0,7 Nm 1,4 Nm 2,0 Nm 3,0 Nm 4,0 Nm 6,0 Nm 10,5 Nm 14,2 Nm 21 Nm 40 Nm 70 Nm		
	Screws made of stainless steel	d = 3,0 mm: d = 3,5 mm: d = 4,0 mm: d = 4,5 mm: d = 5,0 mm: d = 6,0 mm: d = 7,0 mm: d = 8,0 mm: d = 10 mm: d = 12 mm:	1,0 Nm 1,7 Nm 2,4 Nm 3,2 Nm 4,6 Nm 7,0 Nm 8,7 Nm 17 Nm 28 Nm 54 Nm		

	Characteristic	Assessment of characteristic			
2.2	Safety in case of fire				
2.2.1	Reaction to fire	The screws are made from steel classified as Euroclass A1 in accordance with EN 1350-1 and EC decision 96/603/EC, amended by EC Decision 2000/605/EC			
2.3	Hygiene, health and the environment				
2.3.1 Influence on air quality		No dangerous materials **)			
2.4	Safety in use	Not relevant			
2.5 Protection against noise		Not relevant			
2.6	Energy economy and heat retention	Not relevant			
2.7	Related aspects of serviceability				
2.7.1	Durability	The screws have been assessed as having			
2.7.2	Serviceability	satisfactory durability and serviceability when used in timber structures using the timber species described in Eurocode 5 and subject to the conditions defined by service classes 1, 2 and 3			
2.7.3	Identification	See Annex A			

^{*)} See page 4 of this ETA

**) In accordance with http://europa.eu.int-/comm/enterprise/construction/internal/dangsub/dangmain.htm In addition to the specific clauses relating to dangerous

** applicable to the products falling within its scope (e.g. transposed European substances contained in this European Technical Approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the EU Construction Products Directive, these requirements need also to be complied with, when and where they apply.

2.1 Mechanical resistance and stability

The load-carrying capacities for SPAX screws are applicable to the wood-based materials mentioned in paragraph 1 even though the term timber has been used in the following.

The characteristic lateral load-carrying capacities and the characteristic axial withdrawal capacities of SPAX screws or threaded rods should be used for designs in accordance with Eurocode 5 or an appropriate national code.

Point side penetration length must be $\ell_{ef} \geq 4 \cdot d$, where d is the outer thread diameter of the screw or threaded rod. For the fixing of rafters, point side penetration must be at least 40 mm, $\ell_{ef} \geq 40$ mm.

The mathematical penetration length of the threaded rods shall be limited to 1000 mm even if the actual penetration length is longer.

European Technical Approvals for structural members or wood-based panels must be considered where applicable.

Lateral load-carrying capacity

The characteristic lateral load-carrying capacity of SPAX screws or threaded rods shall be calculated according to EN 1995-1-1:2008 (Eurocode 5) using the outer thread diameter d as the nominal diameter of the screw. The contribution from the rope effect may be considered.

The characteristic yield moment shall be calculated from:

SPAX screws for 2,5 mm \leq d \leq 12,0 mm made of carbon steel:

$$M_{v,k} = 0.15 \cdot 600 \cdot d^{2.6}$$
 [Nmm]

SPAX threaded rods:

$$M_{v,k} = 140000$$
 [Nmm]

SPAX screws for 3,0 mm \leq d \leq 12,0 mm made of stainless steel:

$$M_{v,k} = 0.15 \cdot 400 \cdot d^{2.6}$$
 [Nmm]

where

d outer thread diameter [mm](d₁ in the drawings in the annex)

The embedding strength for screws arranged parallel to the plane of cross laminated timber, independent of the angle between screw axis and grain direction, $0^{\circ} \le \alpha \le 90^{\circ}$, shall be calculated from:

$$f_{h,k} = 20 \cdot d^{-0.5}$$
 [N/mm²]

unless otherwise specified in the technical specification (ETA or hEN) for the cross laminated timber.

Where

d outer thread diameter [mm] (d₁ in the drawings in the annex)

The embedding strength for screws or threaded rods in the wide face of cross laminated timber should be assumed as for solid timber based on the characteristic density of the outer layer. If relevant, the angle between force and grain direction of the outer layer should be taken into account.

The direction of the lateral force shall be perpendicular to the screw axis and parallel to the wide face of the cross laminated timber.

For angles $45^{\circ} \le \alpha < 90^{\circ}$ between force and grain direction of the outer layer the characteristic load-carrying capacity may be assumed as 2/3 of the corresponding value for $\alpha = 90^{\circ}$, if only the penetration depth perpendicular to the wide face is taken into account.

Axial withdrawal capacity

The characteristic axial withdrawal capacity of SPAX screws or threaded rods at an angle of $15^{\circ} \leq \alpha \leq 90^{\circ}$ to the grain in solid timber (softwood), glued laminated timber and cross-laminated timber members or at an angle of $30^{\circ} \leq \alpha \leq 90^{\circ}$ to the grain in laminated veneer lumber members shall be calculated according to EN 1995-1-1:2008 from:

$$F_{ax,\alpha,Rk} = \frac{n_{ef} \cdot f_{ax,k} \cdot d \cdot \ell_{ef}}{1, 2 \cdot \cos^2 \alpha + \sin^2 \alpha} \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
 [N]

Where

 $F_{ax,\alpha,RK}$ characteristic withdrawal capacity of the screw at an angle α to the grain [N]

n_{ef} effective number of screws according to EN

1995-1-1:2008

f_{ax,k} Characteristic withdrawal parameter

 $\begin{array}{lll} 2,5 \text{ mm} \leq d \leq 5,0 \text{ mm}: & f_{ax,k} = 14,0 \text{ N/mm}^2 \\ 6,0 \text{ mm} \leq d \leq 8,0 \text{ mm}: & f_{ax,k} = 12,0 \text{ N/mm}^2 \\ d = 10,0 \text{ mm}: & f_{ax,k} = 11,5 \text{ N/mm}^2 \end{array}$

d = 10,0 mm: $f_{ax,k} = 11,0 \text{ N/mm}^2$ d = 12,0 mm: $f_{ax,k} = 10,0 \text{ N/mm}^2$

d outer thread diameter [mm]

 $(d_1 \text{ in the drawings in the annex})$

Penetration length of the threaded part according to EN 1995-1-1:2008 [mm]

 α — Angle between grain and screw axis ($\alpha \geq 15^{\circ}$)

 ρ_k Characteristic density [kg/m³]

For screws penetrating more than one layer of cross laminated timber, the different layers may be taken into account proportionally.

The axial withdrawal capacity is limited by the head pullthrough capacity and the tensile or compressive capacity of the screw or threaded rod.

Head pull-through capacity

The characteristic head pull-through capacity of SPAX screws or threaded rods shall be calculated according to EN 1995-1-1:2008 from:

$$F_{ax,\alpha,Rk} = n_{ef} \cdot f_{head,k} \cdot d_h^2 \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
 [N]

where:

 $F_{ax,\alpha,RK} \quad \begin{array}{ll} \text{Characteristic head pull-through capacity of} \\ \text{the connection at an angle } \alpha \geq 30^{\circ} \text{ to the} \\ \text{grain } \lceil N \rceil \end{array}$

 n_{ef} Effective number of screws according to EN 1995-1-1:2008

 $f_{head,k}$ Characteristic head pull-through parameter [N/mm²]

 d_h Diameter of the screw head or the washer [mm]. Outer diameter of heads or washers $d_h > 32$ mm shall only be considered with a nominal diameter of 32 mm.

 $(d_k \text{ in the drawings in the annex})$

 ρ_k Characteristic density [kg/m³], for woodbased panels $\rho_k = 380 \text{ kg/m}^3$

Characteristic head pull-through parameter for SPAX screws with countersunk or hexagon head without flange in connections with timber and in connections with woodbased panels with thicknesses above 20 mm:

$$\begin{split} d_h & \leq 16 \text{ mm:} & f_{head,k} = 27,0 - d_h \text{ [N/mm^2]} \\ 16 \text{ mm} & < d_h \leq 32 \text{ mm:} \ f_{head,k} = 11,0 - 0,2 \cdot (d_h - 16) \text{ [N/mm^2]} \end{split}$$

Characteristic head pull-through parameter for SPAX screws with washer head, pan head, hexagon head with flange or countersunk head with washer in connections with timber and in connections with wood-based panels with thicknesses above 20 mm:

$$\begin{split} &d_h \leq 16 \text{ mm:} &f_{head,k} = 29,0 - d_h \text{ [N/mm^2]} \\ &16 \text{ mm} < d_h \leq 22 \text{ mm:} f_{head,k} = 13,0 \text{ [N/mm^2]} \\ &22 \text{ mm} < d_h \leq 32 \text{ mm:} f_{head,k} = 16,0 - 0,5 \cdot (d_h - 16) \text{ [N/mm^2]} \end{split}$$

Characteristic head pull-through parameter for screws in connections with wood-based panels with thicknesses between 12 mm and 20 mm:

$$f_{head.k} = 8 \ N/mm^2$$

Screws in connections with wood-based panels with a thickness below 12 mm (minimum thickness of the wood based panels of 1,2·d with d as outer thread diameter):

$$\begin{split} f_{head,k} &= 8 \ N/mm^2 \\ limited \ to \ F_{ax,Rk} &= 400 \ N \end{split}$$

For SPAX screws or threaded rods, the withdrawal capacity of the thread in the member with the screw head may be taken into account instead of the head pull-through capacity.

The head diameter d_h shall be greater than $1.8 \cdot d_s$, where d_s is the smooth shank or the wire diameter. Otherwise the characteristic head pull-through capacity $F_{ax,\alpha,Rk} = 0$.

The minimum thickness of wood-based panels according to the clause 2.1 must be observed.

In steel-to-timber connections the head pull-through capacity is not governing.

Tensile capacity

The characteristic tensile strength $f_{tens,k}$ of SPAX screws made of carbon steel or threaded rods made of carbon steel or stainless steel is:

d = 2.5 mm:	2,0 kN
d = 3.0 mm:	2,8 kN
d = 3.5 mm:	3,8 kN
d = 4.0 mm:	5,0 kN
d = 4,5 mm:	6,4 kN
d = 5.0 mm:	7,9 kN
d = 6.0 mm:	11 kN
d = 7.0 mm:	13 kN
d = 8.0 mm:	17 kN
d = 10,0 mm:	28 kN
d = 12,0 mm:	38 kN

Threaded rods d = 16 mm: 63 kN

The characteristic tensile strength $f_{tens,k}$ of SPAX screws made of stainless steel is:

d = 3.0 mm:	2,1 kN
d = 3.5 mm:	2,9 kN
d = 4,0 mm:	3,8 kN
d = 4.5 mm:	4,2 kN
d = 5.0 mm:	4,9 kN
d = 6.0 mm:	7,1 kN
d = 7.0 mm:	10 kN
d = 8.0 mm:	13 kN
d = 10,0 mm:	20 kN
d = 12,0 mm:	28 kN

For screws or threaded rods used in combination with steel plates, the tear-off capacity of the screw head including a washer shall be greater than the tensile capacity of the screw.

Combined laterally and axially loaded screws or threaded rods

For connections subjected to a combination of axial and lateral load, the following expression should be satisfied:

$$\left(\frac{F_{ax,Ed}}{F_{ax,Rd}}\right)^2 + \left(\frac{F_{la,Ed}}{F_{la,Rd}}\right)^2 \le 1$$

where

 $F_{ax,Ed}$ axial design load of the screw or threaded rod lateral design load of the screw or threaded rod

 $F_{ax,Rd}$ design load-carrying capacity of an axially loaded

screw or threaded rod

 $F_{\text{la},\text{Rd}} \quad \text{ design load-carrying capacity of a laterally loaded}$

screw or threaded rod

Mechanically jointed beams

See annex B

Compressive capacity

The characteristic compressive capacity $F_{ax,Rk}$ of SPAX screws or threaded rods with full thread along the length embedded in timber shall be calculated from:

$$F_{ax,Rk} = min \left\{ f_{ax,k} \cdot d \cdot \ell_{ef} ; \kappa_c \cdot N_{pl,k} \right\}$$
 [N]

where

$$\kappa_{c} \ = \begin{cases} 1 & \text{for } \overline{\lambda}_{k} \leq 0, 2 \\ \frac{1}{k + \sqrt{k^{2} - \overline{\lambda}_{k}^{2}}} & \text{for } \overline{\lambda}_{k} > 0, 2 \end{cases}$$

$$k = 0.5 \cdot \left\lceil 1 + 0.49 \cdot (\overline{\lambda}_k - 0.2) + \overline{\lambda}_k^2 \right\rceil$$

The relative slenderness ratio shall be calculated from:

$$\overline{\lambda}_k = \sqrt{\frac{N_{pl,k}}{N_{ki,k}}}$$

Where

$$N_{pl,k} = \pi \cdot \frac{d_1^2}{4} \cdot f_{y,k}$$
 [N]

is the characteristic value for the axial capacity in case of plastic analysis referred to the inner thread cross section.

Characteristic yield strength:

 $f_{v,k} = 1000 [N/mm^2]$

for SPAX screws made of carbon steel

 $f_{v,k} = 500 [N/mm^2]$

for SPAX threaded rods and SPAX screws made of

Characteristic ideal elastic buckling load:

$$N_{ki,k} = \sqrt{c_h \cdot E_S \cdot I_S}$$
 [N]

Elastic foundation of the screw:

$$c_h = (0.19 + 0.012 \cdot d) \cdot \rho_k \cdot \left(\frac{90^\circ + \alpha}{180^\circ}\right)$$
 [N/mm²]

for screws in cross-laminated timber, the most unfavourable combination of α and ρ_k governs;

Modulus of elasticity:

$$E_s = 210000$$
 [N/mm²]

$$\rho_k$$
 = characteristic density [kg/m³]

Second moment of area:

$$I_S = \frac{\pi}{64} \cdot d_1^4$$
 [mm⁴]

 $d_1 = inner thread diameter$ [mm]

 $(d_2 \text{ in the drawings in the annex})$

 α = angle between screw axis and grain direction

Note: When determining design values of the compressive capacity it should be considered that $f_{ax,d}$ is to be calculated using k_{mod} and γ_M for timber according to EN 1995 while $N_{pl,d}$ is calculated using $\gamma_{M,0}$ for steel according to EN 1993.

Compression reinforcement

See annex C

Tensile reinforcement

See annex D

Shear reinforcement

See annex E

Thermal insulation material on top of rafters

See annex F

2.7 Related aspects of serviceability

2.7.1 Corrosion protection in service class 1, 2 and 3. The SPAX screws and threaded rods are produced from carbon wire. They are brass-plated, nickel-plated bronze finished or electrogalvanised and e.g. yellow or blue chromated with thicknesses of the zinc coating from 4-16 μ m or have a zinc flake coating with thicknesses from 10-20 μ m.

Steel no. 1.4016, 1.4401, 1.4567, 1.4578, 1.4529 and 1.4539 is used for screws made from stainless steel.

3 Attestation of Conformity and CE marking

3.1 Attestation of Conformity system

The system of attestation of conformity is 2+ described in Council Directive 89/106/EEC (Construction Products Directive) Annex III.

- a) Tasks for the manufacturer:
 - (1) Factory production control,
 - (2) Initial type testing of the product,
- b) Tasks for the notified body:
 - (1) Initial inspection of the factory and the factory production control,
 - (2) Continuous surveillance

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer has a factory production control system in the plant and exercises permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer are documented in a systematic manner in the form of written policies and procedures. This production control system ensures that the product is in conformity with the European Technical Approval.

The manufacturer shall only use raw materials supplied with the relevant inspection documents as laid down in the control plan⁴. The incoming raw materials shall be subject to controls and tests by the manufacturer before acceptance. Check of raw materials, such as metal wire, shall include control of the inspection documents presented by suppliers (comparison with nominal values) by verifying dimension and determining material properties.

The manufactured components shall be subject to the following checks:

- Raw material specification;
- Dimension of the screws or threaded rods;
- Characteristic tensile strength f_{tens,k};
- Characteristic torsional strength $f_{tor,k}$;
- The control plan has been deposited at ETA-Danmark and is only made available to the approved bodies involved in the conformity attestation procedure.

- Characteristic insertion moment R_{tor,k};
- Durability;
- Marking.

The control plan, which is part of the technical documentation of this European Technical Approval, includes details of the extent, nature and frequency of testing and controls to be performed within the factory production control and has been agreed between the approval holder and ETA Danmark.

The results of factory production control are recorded and evaluated. The records include at least the following information:

- Designation of the product, basic material and components;
- Type of control or testing;
- Date of manufacture of the product and date of testing of the product or basic material and components;
- Result of control and testing and, if appropriate, comparison with requirements;
- Signature of person responsible for factory production control.

The records shall be presented to ETA Danmark on request.

3.2.1.1 Initial type testing of the product

For initial type-testing the results of the tests performed as part of the assessment for the European Technical Approval shall be used unless there are changes in the production line or plant. In such cases the necessary initial type testing has to be agreed between ETA Danmark and the notified body.

The initial type testing shall be subject to the following checks:

- Raw material specification;
- Dimension of the screws or threaded rods;
- Characteristic yield moment M_{v,k};
- Characteristic withdrawal parameter $f_{ax,k}$;
- Characteristic head pull-through parameter f_{head,k};
- Characteristic tensile strength f_{tens.k};
- Characteristic yield strength if relevant;
- Characteristic torsional strength f_{tor,k};
- Characteristic insertion moment R_{tor,k};
- Durability.

3.2.2. Tasks of notified bodies

3.2.2.1 Initial inspection of the factory and the factory production control

The approved body should ascertain that, in accordance with the control plan, the factory, in particular the staff and equipment, and the factory production control, are suitable to ensure a continuous and orderly manufacturing of the screws with the specifications given in part 2.

3.2.2.2 Continuous surveillance

The approved body shall visit the factory at least once a year for routine inspections. It shall be verified that the system of factory production control and the specified manufacturing processes are maintained, taking account of the control plan.

The results of product certification and continuous surveillance shall be made available on demand by the certification body to ETA Danmark. Where the provisions of the European Technical Approval and the control plan are no longer fulfilled, the certificate of conformity shall be withdrawn by the approved body.

3.3 CE marking

The CE marking shall be affixed on each packaging of screws. The initials "CE" shall be followed by the identification number of the notified body and shall be accompanied by the following information:

- Name or identifying mark of the manufacturer
- The last two digits of the year in which the marking was affixed
- Number of the European Technical Approval
- Name of product
- Outer thread diameter and length of the self-tapping screws
- Type and mean thickness of the corrosion protection, if relevant
- Stainless steel including the material number, if relevant
- Number of the EC Certificate of Conformity

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The screws or threaded rods are manufactured in accordance with the provisions of the European Technical Approval using the automated manufacturing process as identified during the inspection of the plant by the approval body issuing the ETA and the approved body and laid down in the technical documentation.

4.2 Installation

4.2.1 The installation shall be carried out in accordance with Eurocode 5 or an appropriate national code unless otherwise is defined in the following. Instructions from SPAX International GmbH & Co. KG should be considered for installation.

4.2.2 The screws or threaded rods are used for connections in load bearing timber structures between members of solid timber (softwood), glued laminated timber, cross-laminated timber (minimum diameter d=6.0 mm), and laminated veneer lumber, similar glued members, wood-based panels or steel members. To connect cross-laminated timber the inner thread diameter d_1 of the screws shall be greater than the maximal width of the gaps in the layer.

The screws or threaded rods may be used for connections in load bearing timber structures with structural members according to an associated European Technical Approval, if according to the associated European Technical Approval of the structural member a connection in load bearing timber structures with screws according to a European Technical Approval is allowed.

SPAX fully threaded screws or threaded rods are also used as tensile or compressive reinforcement perpendicular to the grain or as shear reinforcement.

Furthermore the screws with diameters between 6 mm and 12 mm may also be used for the fixing of insulation on top of rafters.

A minimum of two screws or threaded rods should be used for connections in load bearing timber structures.

The minimum penetration depth in structural members made of solid, glued or cross-laminated timber is $4 \cdot d$.

Wood-based panels and steel plates should only be arranged on the side of the screw head. The minimum thickness of wood-based panels should be 1,2·d. Furthermore the minimum thickness for following wood-based panels should be:

- Plywood, Fibreboards: 6 mm
- Particleboards, OSB, Cement Particleboards: 8 mm

• Solid wood panels: 12 mm

For structural members according to European Technical Approvals the terms of the European Technical Approvals must be considered.

If screws with an outer thread diameter $d \ge 8$ mm are used in load bearing timber structures, the structural solid or glued laminated timber, laminated veneer lumber and similar glued members must be from spruce, pine or fir. This does not apply for screws or threaded rods in pre-drilled holes.

The minimum angle between the screw axis and the grain direction is $\alpha = 15^{\circ}$.

4.2.3 The screws shall be driven into softwood without predrilling or after pre-drilling with a diameter not larger than the inner thread diameter for the length of the threaded part and with a maximum of the smooth shank diameter for the length of the smooth shank. The threaded rods shall be driven into softwood after pre-drilling with the following diameters:

Threaded rod 16 mm Pre-drilling diameter 13 mm Threaded rod shall only be driven into pre-drilled holes

The hole diameter in steel members must be predrilled with a suitable diameter.

Only the equipment prescribed by SPAX GmbH & Co. KG shall be used for driving the screws.

In connections with screws with countersunk head according to Annex A the head must be flush with the surface of the connected structural member. A deeper countersink is not allowed.

4.2.4 Unless otherwise specified, minimum thickness for non-predrilled structural members is t = 24 mm for screws with outer thread diameter d < 8 mm, t = 30 mm for screws with outer thread diameter d = 8 mm, t = 40 mm for screws with outer thread diameter d = 10 mm and t = 80 mm for screws with outer thread diameter d = 12 mm.

For structural timber members, minimum spacing and distances for screws in predrilled holes are given in EN 1995-1-1:2008 (Eurocode 5) clause 8.3.1.2 and table 8.2 as for nails in predrilled holes. These minimum spacing and distances also apply for SPAX screws with CUT or 4CUT drill tip in non-predrilled holes. Here, the outer thread diameter d must be considered. For SPAX screws with CUT or 4CUT drill tip in non-predrilled holes the following conditions shall be fulfilled:

- $a_1 \ge 5 \cdot d$
- $a_{3,c} \ge 12 \cdot d$
- $a_{3,t} \ge 12 \cdot d$
- minimum cross-section $\geq 40 \text{ d}^2$

• screws with CUT drill tip:

$t_{min} = max \{5 \cdot d; 20 \text{ mm}\}$	for $d \le 6 \text{ mm}$
$t_{min} = 7 \cdot d$	for $d \ge 8 \text{ mm}$

screws with 4CUT drill tip:

$t_{\min} = \max \{6 \cdot d; 20 \text{ mm}\}$	for $d \le 6$ mm
$t_{min} = 7 \cdot d$	for $d \ge 8 \text{ mm}$

For SPAX screws not fulfilling the above conditions or for screws in laminated veneer lumber, minimum spacing and distances are given in EN 1995-1-1:2008 clause 8.3.1.2 and Table 8.2 as for nails in non-predrilled holes.

Alternatively, minimum distances and spacing for exclusively axially loaded SPAX screws with CUT or 4CUT drill tip or with $d \le 8$ mm in non-predrilled holes in members of solid timber, glued laminated timber or similar glued products with a minimum thickness $t = 12 \cdot d$ may be taken as:

Spacing a ₁ parallel to the grain	$a_1 = 5 \cdot d$
Spacing a ₂ perpendicular to the grain	$a_2=5\cdot d$
Distance a _{3,c} from centre of the screw-part in	
timber to the end grain	$a_{3,c} = 5 \cdot d$
Distance a _{4,c} from centre of the screw-part in	
timber to the edge	$a_{4,c} = 4 \cdot d$
Distance a _{4,c} from centre of the screw-part in	
timber to the edge for screws with CUT	
or 4CUT drill tip only	$a_{4,c} = 3 \cdot d$

Spacing a_2 perpendicular to the grain may be reduced from 5·d to 2,5·d, if the condition $a_1 \cdot a_2 \ge 25 \cdot d^2$ is fulfilled.

Alternatively, minimum distances and spacing for exclusively axially loaded SPAX screws in laminated veneer members with a minimum thickness $t=6\cdot d$ may be taken as:

Spacing a ₁ parallel to the grain	$a_1 = 5 \cdot d$
Spacing a ₂ perpendicular to the grain	$a_2 = 5 \cdot d$
Distance $a_{3,c}$ from centre of the screw-part in	
timber to the end grain	$a_{3,c} = 5 \cdot d$
Distance a _{4,c} from centre of the screw-part in	
timber to the edge	$a_{4,c} = 3 \cdot d$

Spacing a_2 perpendicular to the grain may be reduced from 5·d to 2,5·d, if the condition $a_1 \cdot a_2 \ge 25 \cdot d^2$ is fulfilled.

For Douglas fir members minimum spacing and distances parallel to the grain shall be increased by 50%.

Minimum distances from loaded or unloaded ends must be 15·d for screws in non-predrilled holes with outer thread diameter $d \ge 8$ mm and timber thickness $t < 5 \cdot d$.

Minimum distances from the unloaded edge perpendicular to the grain may be reduced to $3 \cdot d$ also for timber thickness $t < 5 \cdot d$, if the spacing parallel to the grain and the end distance is at least $25 \cdot d$.

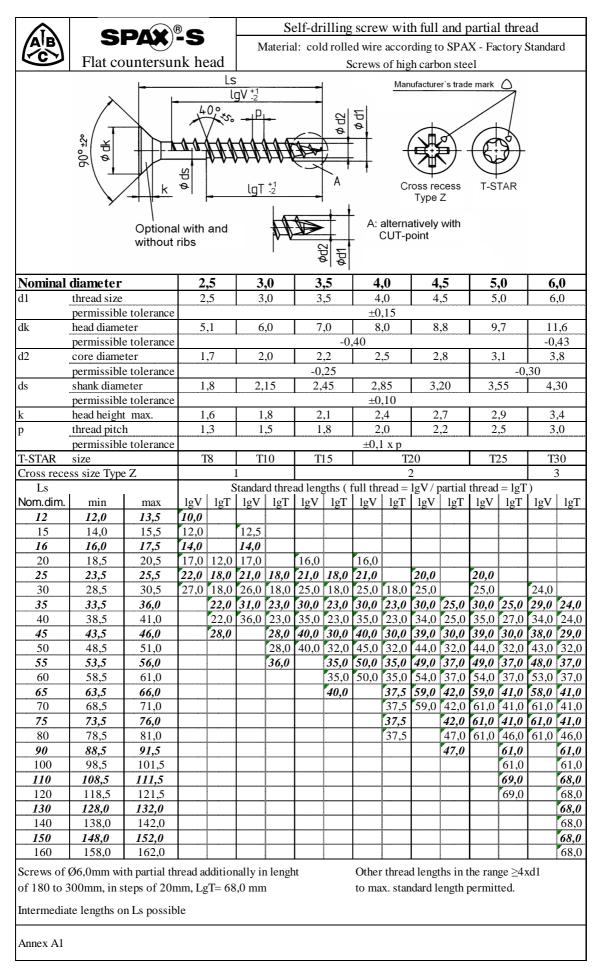
Unless specified otherwise in the technical specification (ETA or hEN) of cross laminated timber, minimum distances and spacing for screws in the wide face of cross laminated timber members with a minimum thickness $t=10\cdot d$ may be taken as (see Annex B):

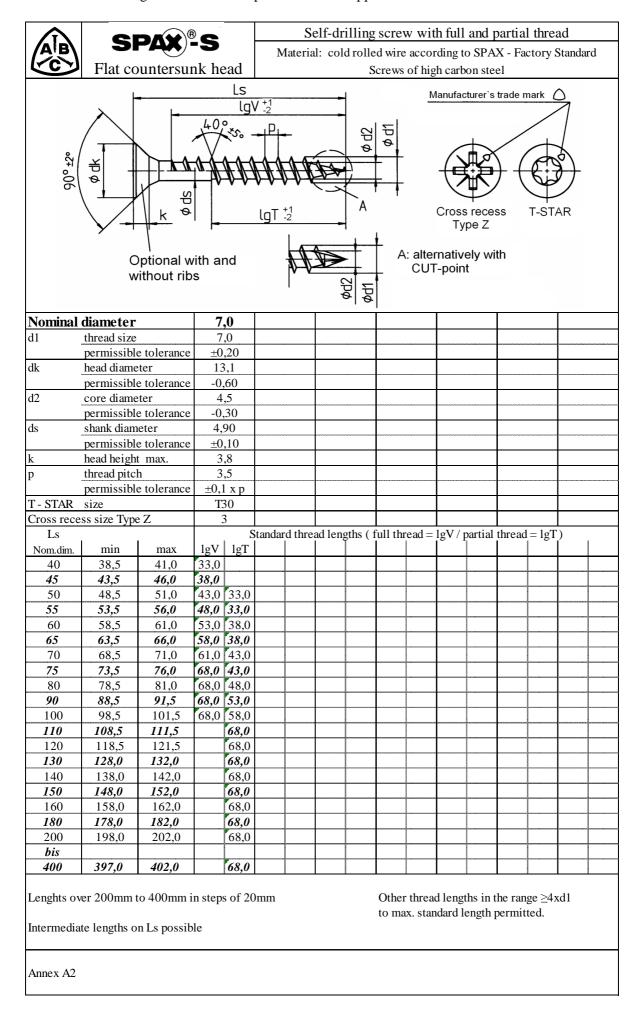
To a may be taken as (see Timex B).	
Spacing a ₁ parallel to the grain	$a_1 = 4 \cdot d$
Spacing a ₂ perpendicular to the grain	$a_2 = 2,5 \cdot d$
Distance a _{3,c} from centre of the screw-part in	
timber to the unloaded end grain	$a_{3,c}=6\cdot d$
Distance a _{3,t} from centre of the screw-part in	
timber to the loaded end grain	$a_{3,t}=6\cdot d$
Distance a _{4,c} from centre of the screw-part in	
timber to the unloaded edge	$a_{4,c} = 2.5 \cdot d$
Distance a _{4,t} from centre of the screw-part in	
timber to the loaded edge	$a_{4,t} = 6 \cdot d$

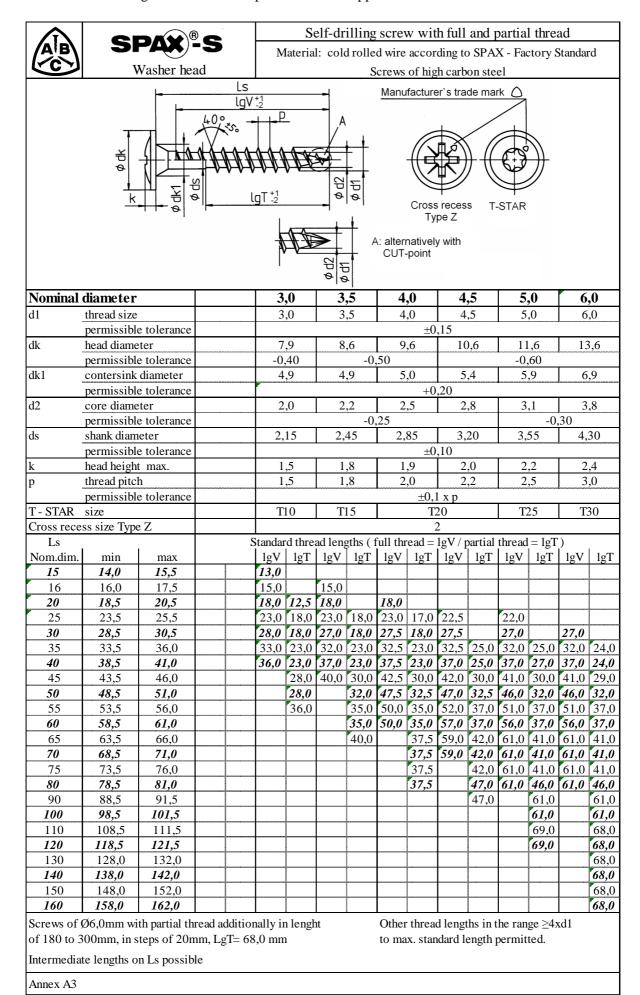
Unless specified otherwise in the technical specification (ETA or hEN) of cross laminated timber, minimum distances and spacing for screws in the edge surface of cross laminated timber members with a minimum thickness $t = 10 \cdot d$ and a minimum penetration depth perpendicular to the edge surface of $10 \cdot d$ may be taken as (see Annex B):

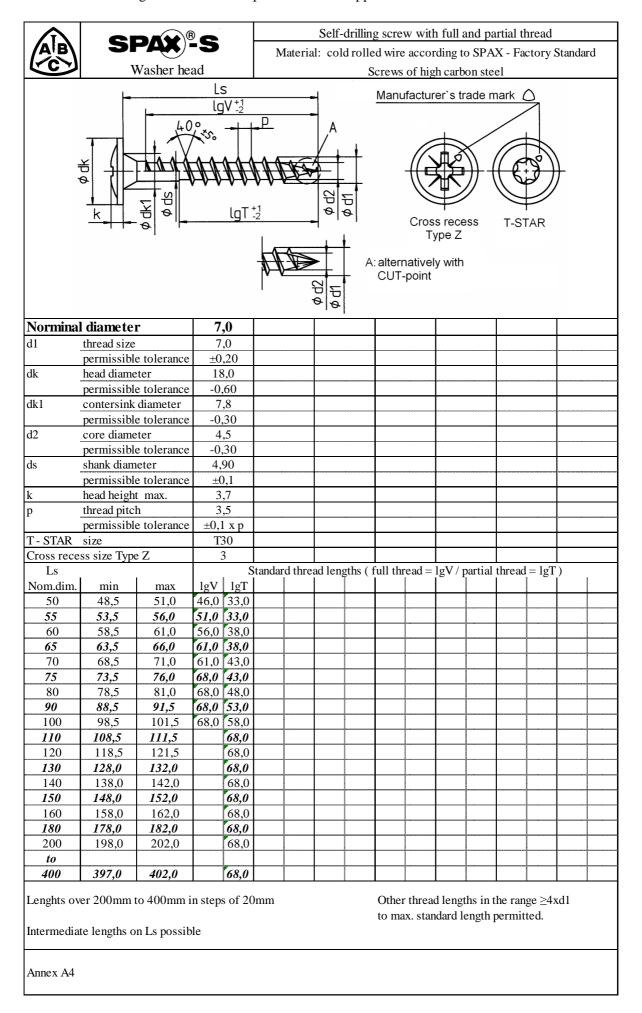
Spacing a ₁ parallel to the CLT plane	$a_1 = 10 \cdot d$
Spacing a ₂ perpendicular to the CLT plane	$a_2 = 4 \cdot d$
Distance $a_{3,c}$ from centre of the screw-part in	
timber to the unloaded end	$a_{3,c}=7\cdot d$
Distance $a_{3,t}$ from centre of the screw-part in	
timber to the loaded end	$a_{3,t} = 12 \cdot d$
Distance $a_{4,c}$ from centre of the screw-part in	
timber to the unloaded edge	$a_{4,c} = 3 \cdot d$
Distance a _{4,t} from centre of the screw-part in	
timber to the loaded edge	$a_{4,t} = 6 \cdot d$

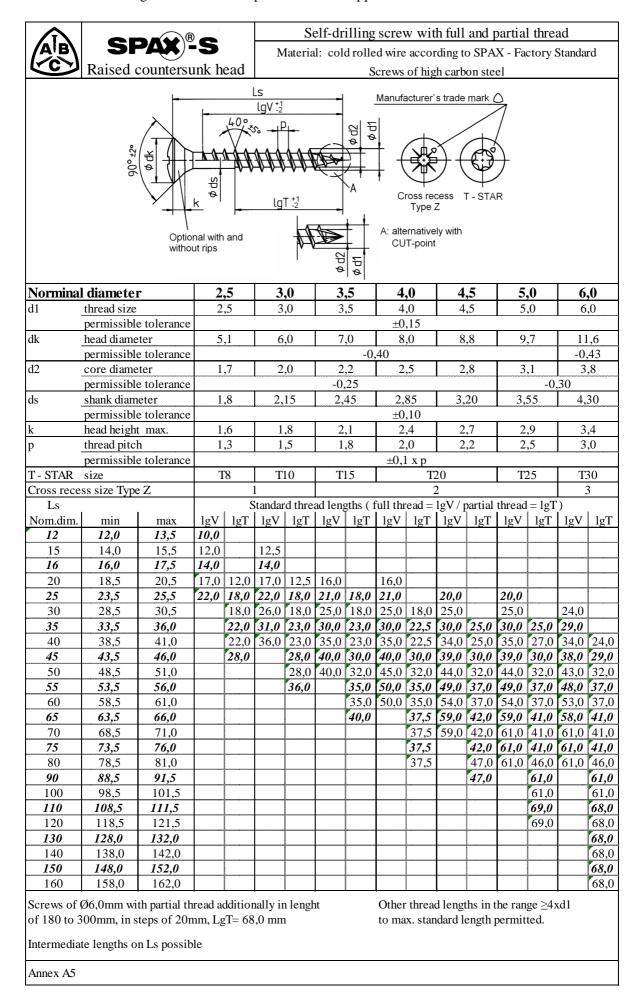
For a crossed screw couple the minimum spacing between the crossing screws is 1,5·d.

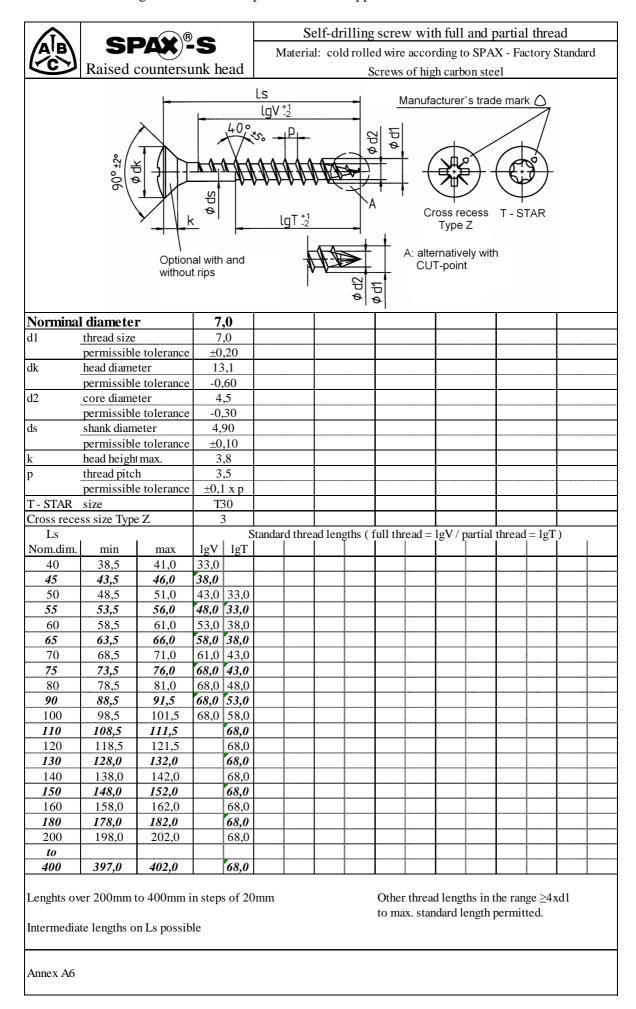

Minimum distances and spacing for SPAX screws in mechanically jointed beams are given in Annex B.

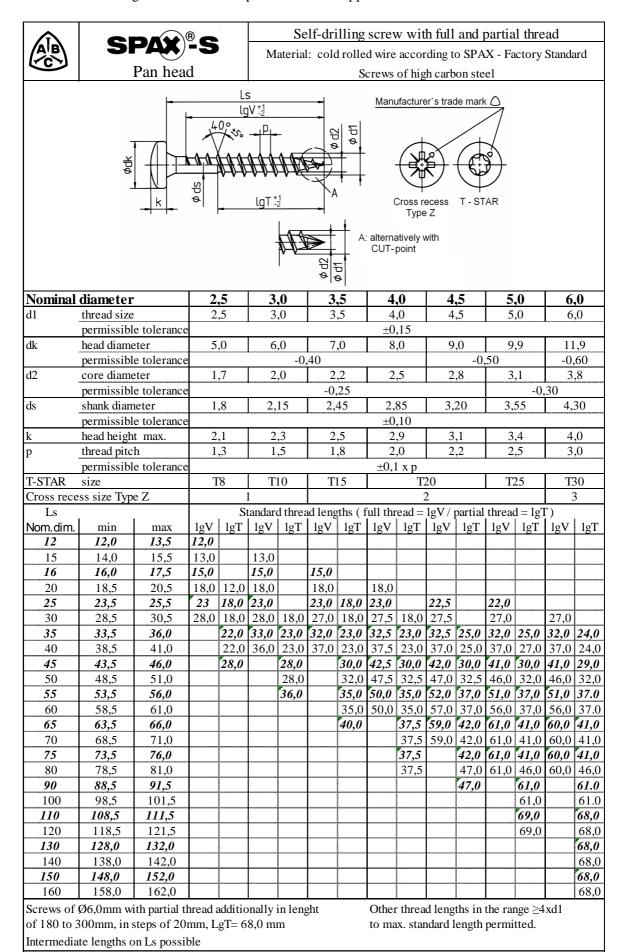

4.3 Maintenance and repair

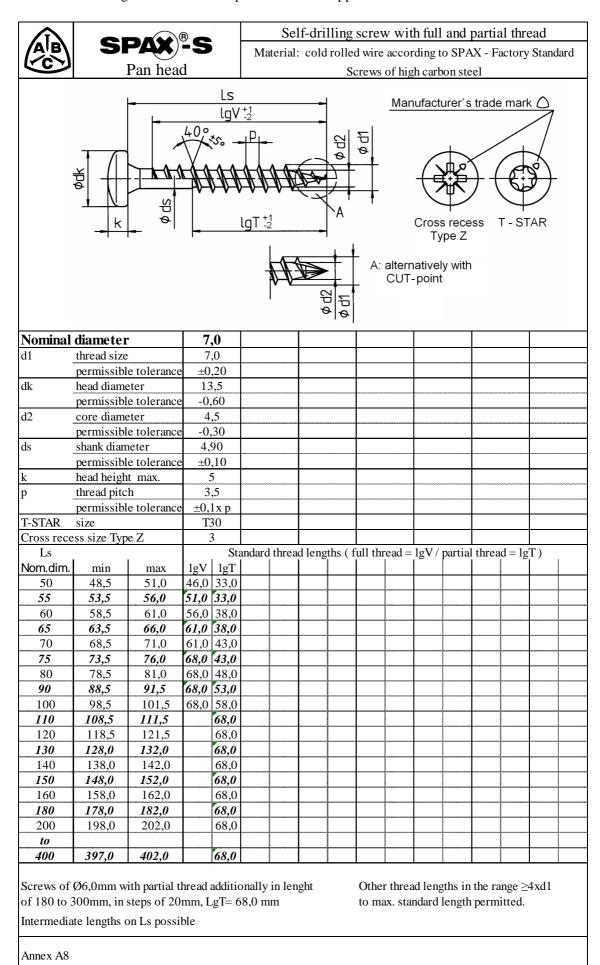

Maintenance is not required during the assumed intended working life. Should repair prove necessary, it is normal to replace the screw.

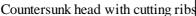

Thomas Bruun Manager, ETA-Danmark

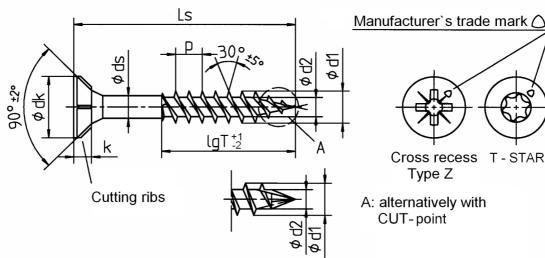

Annex A
Drawings, designation and material specification of SPAX screws

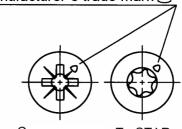






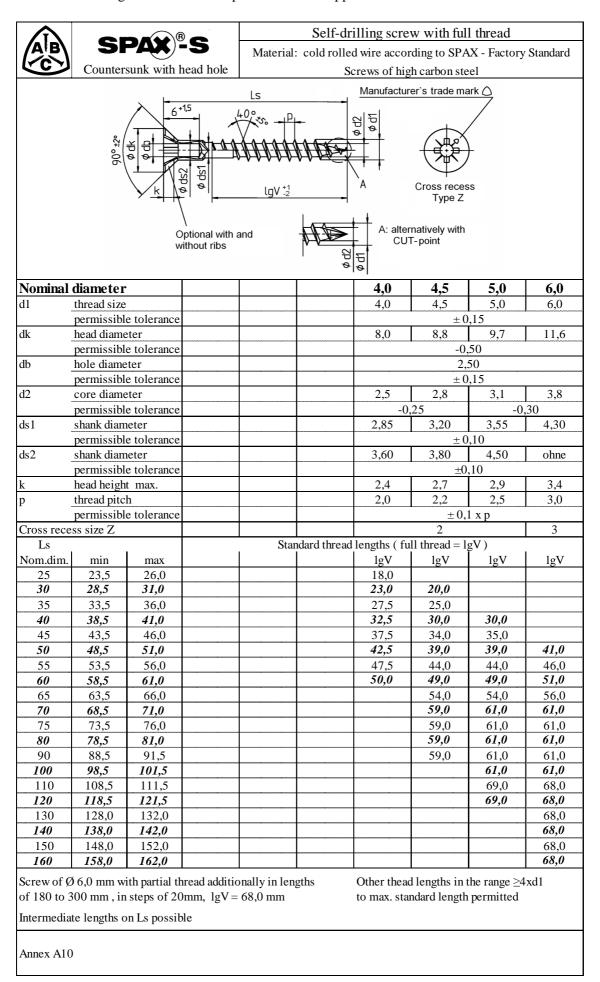


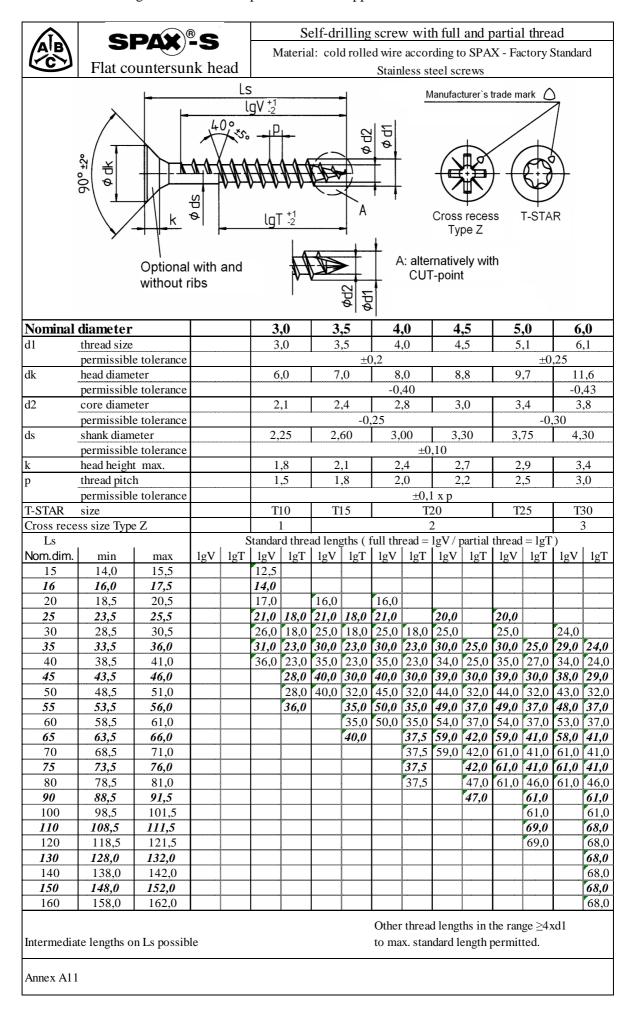


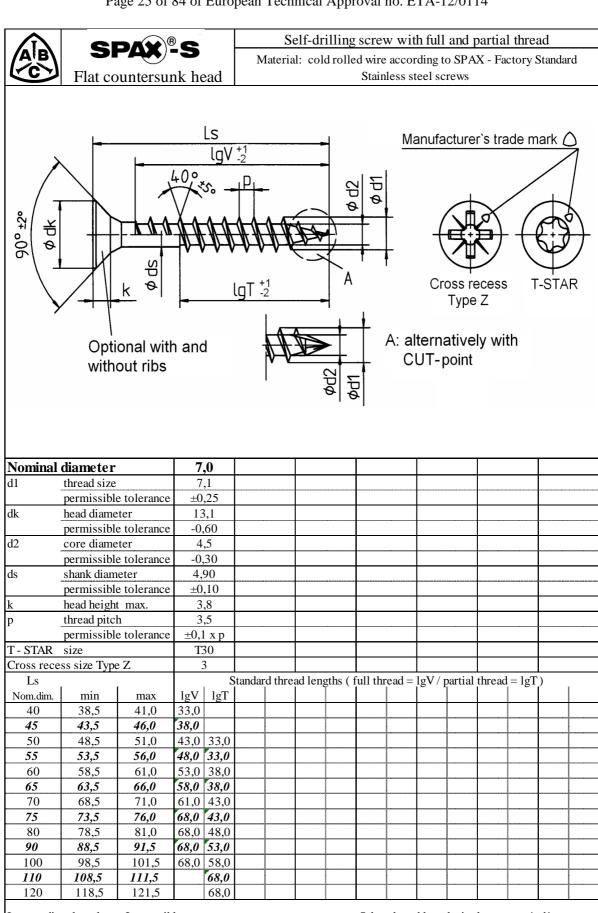

Self-drilling screw with duble thread

Material: cold rolled wire according to SPAX - Factory standard

Screws of high carbon steel

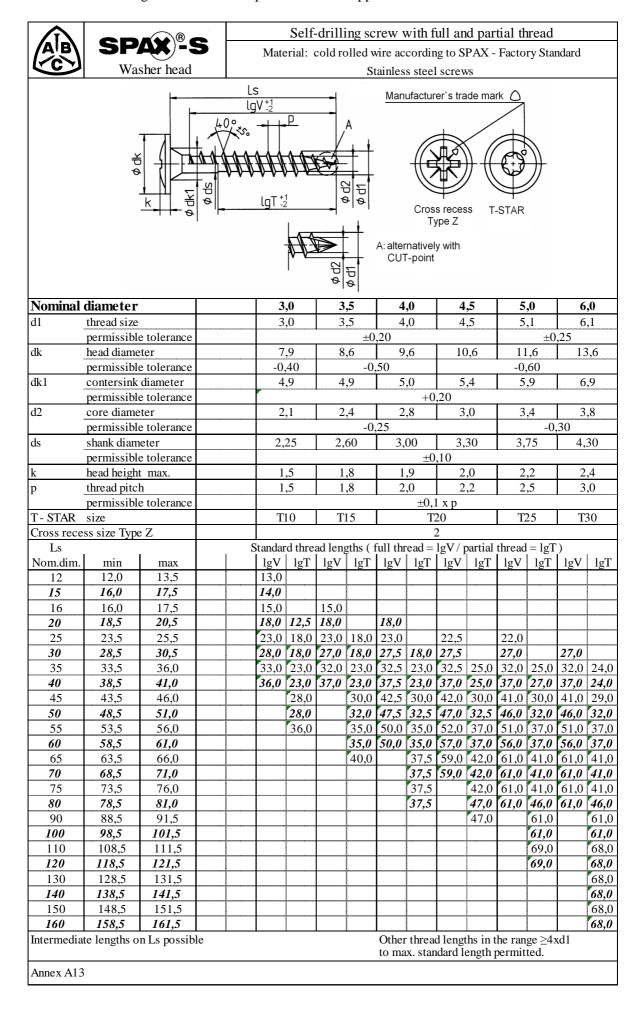

Cross recess T - STAR Type Z


A: alternatively with CUT-point

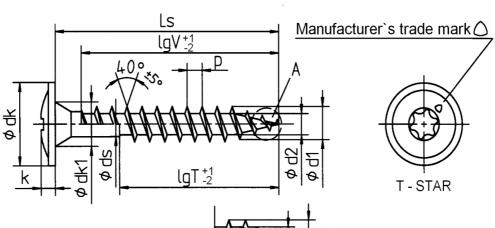

Normina	l diamete	r				4,0	4,5		
d1	thread size					4,0	4,5		
	permissibl	e tolerance				±0	,15		
dk	head diameter					8,0	8,8		
	permissibl	e tolerance				-0.	40		
d2	core diameter					2,5	2,8		
	permissible tolerance					-0,25			
ds	shank diam	eter				2,85	3,20		
	permissibl	e tolerance				±0,10			
k	head heigh	t max.				2,4	2,7		
р	thead pitch	1				3,3	3,5		
•	permissibl	e tolerance				±0,1	хр		
T - STAR	T - STAR size						20		
	Cross recess size Type Z						2		
Ls				Stand	dard thread l	enghts (par	tial thread =	lgT)	•
Nom.dim.	min	max				lgT	lgT		
35	33,5	36,0				22,5	24,0		
40	38,5	41,0				22,5	24,0		
45	43,5	46,0				30,0	29,0		
50	48,5	51,0				30,0	29,0		
55	53,5	56,0				35,0	34,0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
60	58,5	61,0				35,0	34,0		
65	63,5	66,0				37,5	42,0		
70	68,5	71,0	**************************************		- Tourism Tour	37,5	42,0		CONTRACTOR OF THE PROPERTY OF
75	73,5	76,0				50,0	49,0		
80	78,5	81,0				- 2,4	49,0	,	
90	88.5	91.5					49.0		

Intermediate lengths on Ls possible

Other thread lengths in the range $\ge 4xd1$ to max. standard length permitted



Intermediate lengths on Ls possible


Other thread lengths in the range $\geq 4xd1$ to max. standard length permitted.

Material: cold rolled wire according to SPAX - Factory Standard Stainless steel screw

	A: alternatively with
φ d2	CUT- point

Normina	l diamete	r	7	,0												
d1	thread size		7	,1												
	permissible	e tolerance	±0	,25												
dk	head diame		***************************************	3,0												
	permissible	e tolerance		,60												
dk1	contersink	diameter	7	,8												
	permissible		,30													
d2	core diame		,5													
	permissible tolerance			,30 90												
ds																
	permissible tolerance			,10												
k	head heigh		,7													
p	thread pitch		***************************************	,5												
	permissible	e tolerance	$\pm 0,1$	lхр												
T - STAR	size		T.	30												
Ls		1			tanda	rd thre	ad len	gths (full th	read =	lgV/	partial	thread	l = lgT)	
Nom.dim.		max		lgT												
50	48,5	51,0		33,0												
55	53,5	56,0		33,0												
60	58,5	61,0		38,0												
65	63,5	66,0		38,0												
70	68,5	71,0		43,0												
75	73,5	76,0		43,0												
80	78,5	81,0		48,0												
90	88,5	91,5		53,0									•		•	
100	98,5	101,5	68,0	58,0												

Intermediate lengths on Ls possible

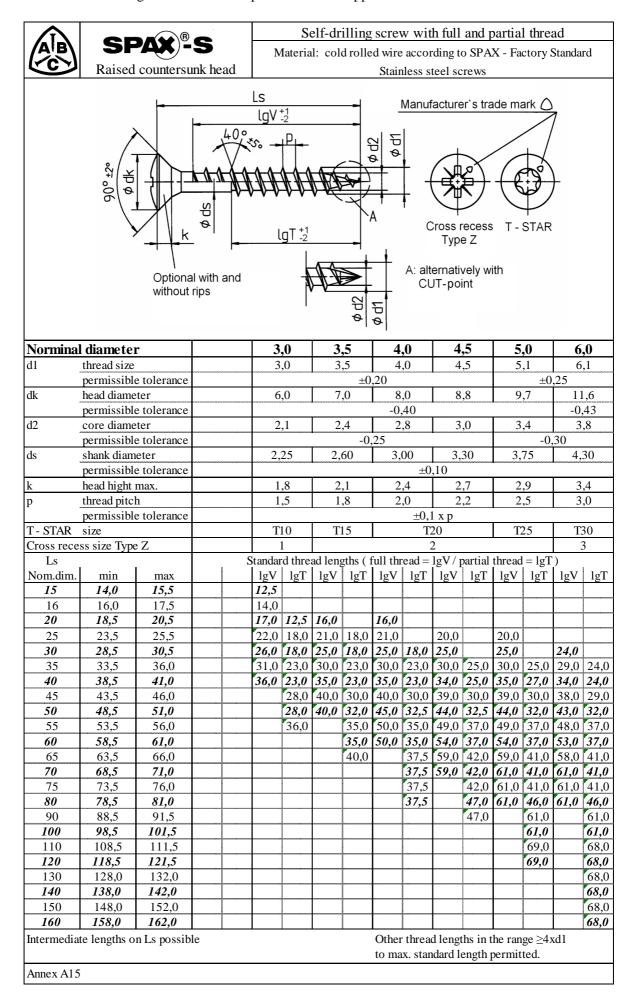
108,5

118,5

111,5

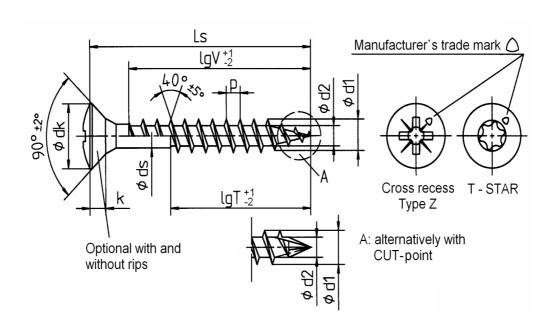
121,5

68,0


68,0

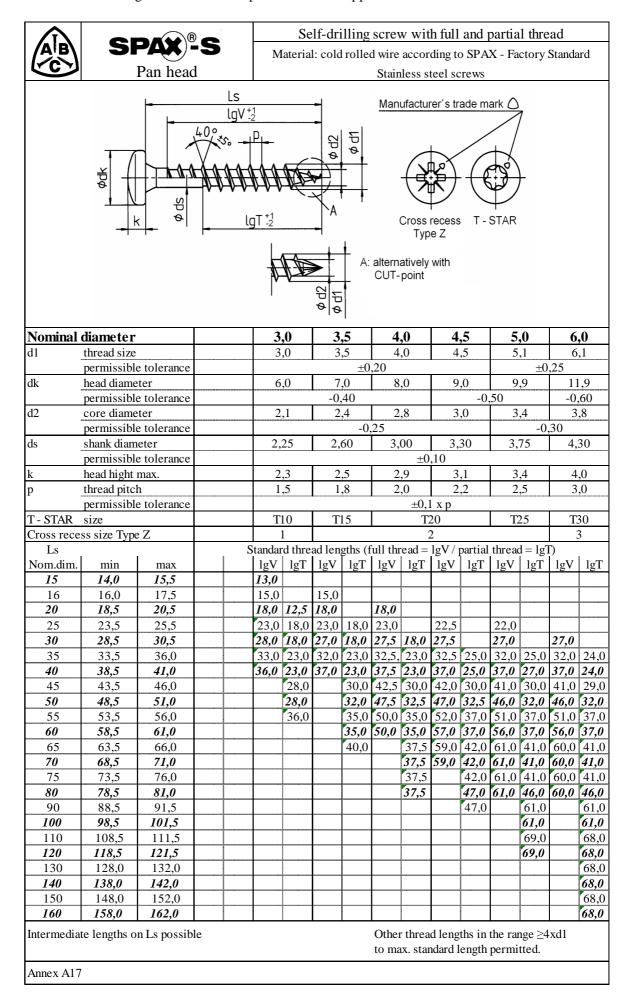
Other thread lengths in the range $\ge 4xd1$ to max. standard length permitted.

Annex A14


110

120

Material: cold rolled wire according to SPAX - Factory Standard Stailness steel screw

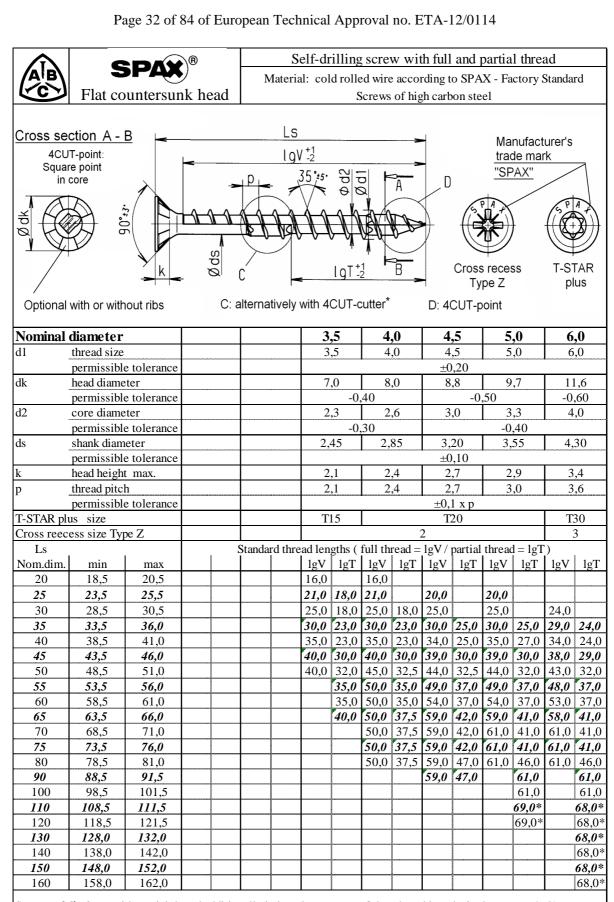


Normina	l diameter	7,0									
d1	thread size	7,1									
	permissible tolerance	±0,25									
dk	head diameter	13,1									
	permissible tolerance	-0,60									
d2	core diameter	4,5									
	permissible tolerance	-0,30									
ds	shank diameter	4,90									
	permissible tolerance	±0,10									
k	head height max.	3,8									
p	thread pitch	3,5									
	permissible tolerance	±0,1 x p									
T - STAR	size	T30									
Cross rece	ess size Type Z	3									
Ls	-	Standard thread lengths (full thread = $\lg V / partial thread = \lg T$)									

Ls				. S	tandaı	rd thre	ad leng	gths (full thi	read =	lgV/1	partial	thread	l = lgT)	
Nom dim.	min	max	lgV	lgT												
40	38,5	41,0	33,0													
45	43,5	46,0	38,0													
50	48,5	51,0	43,0	33,0												
55	53,5	56,0	48,0	33,0												
60	58,5	61,0	53,0	38,0												
65	63,5	66,0	58,0	38,0												
70	68,5	71,0	61,0	43,0												
75	73,5	76,0	68,0	43,0												
80	78,5	81,0	68,0	48,0												
90	88,5	91,5	68,0	53,0												
100	98,5	101,5	68,0	58,0												
110	108,5	111,5		68,0												
120	118,5	121,5		68,0												

Intermediate lengths on Ls possible

Other thread lengths in the range $\ge 4xd1$ to max. standard length permitted.


Material: cold rolled wire according to SPAX - Factory Standard
Stainless steel screws

Nominal	diameter		7,0												
d1	thread size		7,1												
uı		e tolerance	±0,25												
dk	head diame														
ak	0.000.000.000.000.000.000.000.000.000.000		13,5						***************************************					***************************************	
12	•	e tolerance	-0,60												
d2	core diame		4,5												
	permissible tolerance		-0,30												
ds	shank diameter		4,90												
	permissible	±0,10													
k	head hight	5 3,5													
p	thread pitch														
	permissible tolerance														
T - STAR size			T30												
Cross rece	Cross recess size Type Z		3												
Ls			Standard thread lengths (full thread = lgV / partial thread = lgT)												
Nom.dim.	min	max	lgV lgT												
50	48,5	51,0	46,0 33,0												
55	53,5	56,0	51,0 33,0												
60	58,5	61,0	56,0 38,0												
65	63,5	66,0	61,0 38,0												
70	68,5	71,0	61,0 43,0												
75	73,5	76,0	68,0 43,0												
80	78,5	81,0	68,0 48,0				***************************************			***************************************		***************************************			
90	88,5	91,5	68,0 53,0												
100	98,5	101,5	68,0 58,0												
110	108,5	111,5	68,0												
120	118,5	121,5	68,0												
	110,5	1-1,0	100,0		1				1		l .	i			R

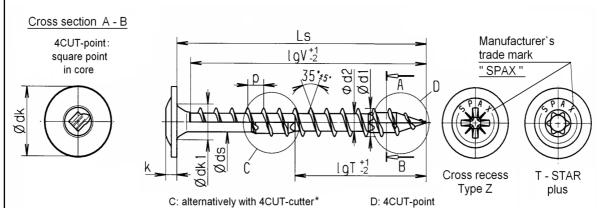
Intermediate lengths on Ls possible

Other thread lengths in the range $\geq 4xd1$ to max. standard length permitted.

Screws of Ø6,0mm with partial thread additionally in lengths of 180 to 300mm, in steps of 20mm, LgT= 68,0 mm³

Other thread lengths in the range $\geq 4xd1$ to max. standard length permitted.

Intermediate lengths on Ls possible


* Design C with 1gT= max. 65,0 mm

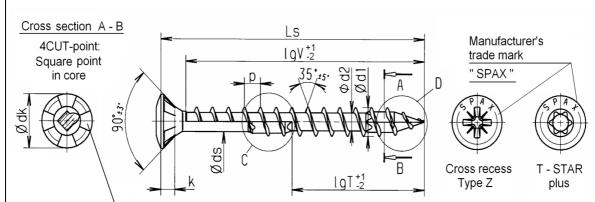
Material: cold rolled wire according to SPAX - Factory Standard

Screws of high carbon steel

Nomina	l diameter	3,5	4,0	4,5	5,0	6,0					
d1	thread size	3,5	4,0	4,5	5,0	6,0					
	permissible tolerance			±0,20							
dk	head diameter	8,6	9,6	10,6	11,6	13,6					
	permissible tolerance	-0,	,50		-0,60						
dk1	countersink diameter	4,9	5,0	5,4	5,9	6,9					
	permissible tolerance		•	+0,20		•					
d2	core diameter	2,3	2,6	3,0	3,3	4,0					
	permissible tolerance	-0,	,30		-0,40						
ds	shank diameter	2,45	2,85	3,20	3,55	4,30					
	permissible tolerance		•	±0,10							
k	head height max.	1,8	1,9	2,0	2,2	3,1					
p	thread pitch	2,1	2,4	2,7	3,0	3,6					
	permissible tolerance		±0,1 x p								
T-STAR I	olus size	T15		T20		T30					
Cross rec	cess size Type Z		2.								

T-STAR plus size				T:	T15		120						
Cross rece	ss size Type	eΖ							2				
Ls		-	Standard tl	hread len	gths (full th	read =	lgV/	partial	thread	l = lgT)	
Nom.dim.	min	max		lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT
16	16,0	17,5		15,0									
20	18,5	20,5		18,0		18,0							
25	23,5	25,5		23,0	18,0	23,0		22,5		22,0			
30	28,5	30,5		27,0	18,0	27,5	18,0	27,5		27,0		27,0	
35	33,5	36,0		32,0	23,0	32,5	23,0	32,5	25,0	32,0	25,0	32,0	24,0
40	38,5	41,0		37,0	23,0	37,5	23,0	37,0	25,0	37,0	27,0	37,0	24,0
45	43,5	46,0		40,0	30,0	42,5	30,0	42,0	30,0	41,0	30,0	41,0	29,0
50	48,5	51,0		40,0	32,0	47,5	32,5	47,0	32,5	46,0	32,0	46,0	32,0
55	53,5	56,0			35,0	50,0	35,0	52,0	37,0	51,0	37,0	51,0	37,0
60	58,5	61,0			35,0	50,0	35,0	57,0	37,0	56,0	37,0	56,0	37,0
65	63,5	66,0			40,0	50,0	37,5	59,0	42,0	61,0	41,0	61,0	41,0
70	68,5	71,0				50,0	37,5	59,0	42,0	61,0	41,0	61,0	41,0
75	73,5	76,0				50,0	37,5	59,0	42,0	61,0	41,0	61,0	41,0
80	78,5	81,0						59,0	47,0	61,0	46,0	61,0	46,0
90	88,5	91,5						59,0	47,0		61,0		61,0
100	98,5	101,5									61,0		61,0
110	108,5	111,5									69,0*		68,0*
120	118,5	121,5									69,0*		68,0*
130	128,0	132,0											68,0*
140	138,0	142,0											68,0*
150	148,0	152,0											68,0*
160	158,0	162,0											68,0*

Screws of Ø6,0mm with partial thread additionally in lengths of 180 to 300mm, in steps of 20mm, LgT= 68,0 mm


Other thread lengths in the range $\geq 4xd1$ to max. standard length permitted.

Intermediate lengths on Ls possible

* Design C with 1gT= max. 65,0 mm

Material: cold rolled wire according to SPAX - Factory Standard Screws of high carbon steel

Optional with or without ribs C: alternatively with 4CUT-cutter* D: 4CUT-point

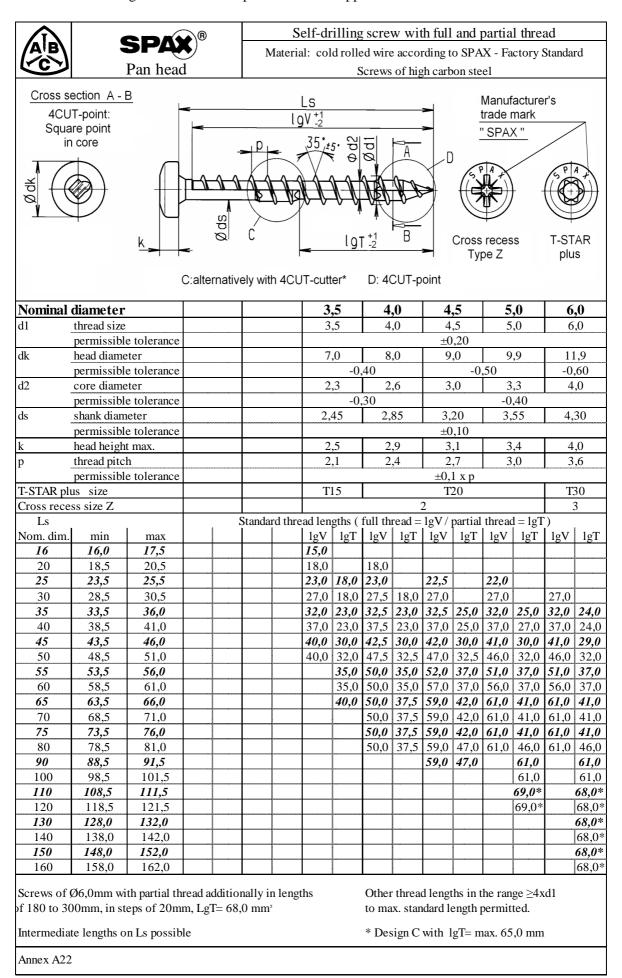
Nominal	diamerer					3	,5	4	,0	4	,5	5	,0	6	,0		
d1	thread size						3	,5	4	,0	4	,5		,0	6	,0	
	permissible	e tolerance									±0	,20					
dk	head diame	eter					7	,0	8	,0	8	,8	9	,7	11	1,6	
	permissible	e tolerance						-0,	40				-0	,50			
d2	core diame	eter					2	,3	2	,6	3	,0	3	,3	4	,0	
	permissible	e tolerance						-0,	,30					,40			
ds	shank diam	eter					2,	45	2,	85	3,	20	3,	55	4,	30	
	permissible	e tolerance										,10					
k	head heigh						2			,4		,7		,9	3,4		
p	thread pitc						2	,1	2	,4	2	,7	3	,0	3	,6	
	permissible					±0,1 x p											
T-STAR pl						T15 T20									30		
Cross rece	ss size Type					2 3											
Ls			Standard thread lengths (full thread = lgV / partial							thread	l = lgT	')					
Nom.dim.	min	max					lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT	
20	18,5	20,5					16,0		16,0								
25	23,5	25,5					23,0	18,0	21,0		20,0		20,0				
30	28,5	30,5					25,0	18,0	25,0	18,0	25,0		25,0		24,0		
35	33,5	36,0							30,0		30,0		30,0		29,0		
40	38,5	41,0										25,0		27,0	34,0		
45	43,5	46,0						30,0				30,0		30,0	38,0		
50	48,5	51,0					40,0		45,0			32,5		32,0	43,0		
55	53,5	56,0						35,0				37,0		37,0	48,0		
60	58,5	61,0						35,0				37,0		37,0	53,0		
65	63,5	66,0						40,0				42,0		41,0	58,0	41,0	
70	68,5	71,0											61,0		61,0		
75	73,5	76,0											61,0			A	
80	78,5	81,0							50,0	37,5			61,0		61,0	A	
90	88,5	91,5									59,0	47,0		61,0		61,0	
100	98,5	101,5												61,0		61,0	
110	108,5	111,5												69,0*		68,0*	
120	118,5	121,5												69,0*		68,0*	
130	128,0	132,0														68,0*	
140	138,0	142,0														68,0*	
150	148,0	152,0									l					68,0*	

Screws of Ø6,0mm with partial thread additionally in lengths of 180 to 300mm, in steps of 20mm, LgT= 68,0 mm³

162,0

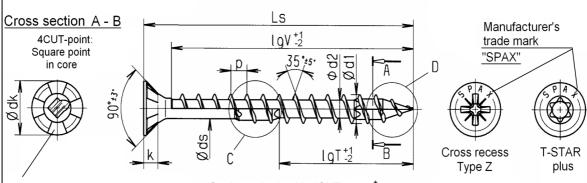
Other thread lengths in the range $\ge 4xd1$ to max. standard length permitted.

68,0*


Intermediate lengths on Ls possible

158,0

* Design C with 1gT= max. 65,0 mm

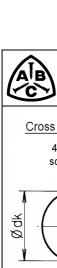

Annex A21

160

Material: cold rolled wire according to SPAX - Factory Standard Stainless steel screws

Optional with or without ribs

C: alternatively with 4CUT-cutter*

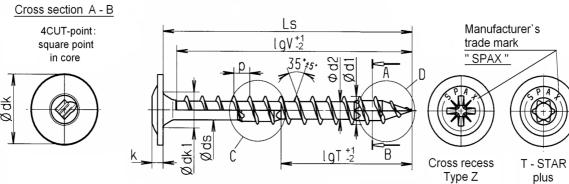

D: 4CUT-point

Nominal diameter							3	,5	4	,0	4.	,5	5	,0	6	,0	
d1	thread Size	:						,5	4	,0	4	,5	5	,1	6	,1	
	permissible	e tolerance							±0	,20				±0	,25		
dk	head diame	eter					7	,0	8	,0	8	,8	9	,7	11	1,6	
	permissible	e tolerance						-0.	,40			-0	,50		-0.	,60	
d2	core diame	eter					2	,5	2	,8	3	,2	3	,5	4	,0	
	permissible	e tolerance						-0.	,30				,40		+0,1	/ -0,3	
ds	shank diam						2,	60	3,	00	3,	30				30	
	permissible											,10					
k	head height	t max.					2	,1		,4		,7		,9	3	,4	
p	thread pitcl						2	,1	2	,4	L	,7	3	,0	3,6		
	permissible tolerance							±0,1 x p									
T-STAR pl						T	15				20				30		
	ess size Typ									2					3		
Ls			Ι.,	5	Standa	rd thre	ad len	gths (full th	read =	lgV/	partial	thread	d = lgT)	,	
Nom.dim.	min	max					lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT	
20	18,5	20,5					16,0		16,0								
25	23,5	25,5							21,0		20,0		20,0				
30	28,5	30,5							25,0			_	25,0		24,0		
35	33,5	36,0							30,0						29,0		
40	38,5	41,0														£	
45	43,5	46,0							40,0						38,0		
50	48,5	51,0					40,0										
55	53,5	56,0							50,0							37,0	
60	58,5	61,0							50,0						53,0	37,0	
65	63,5	66,0						40,0	50,0							41,0	
70	68,5	71,0								37,5					61,0	41,0	
75	73,5	76,0								37,5		42,0		<u> </u>	61,0	41,0	
80	78,5	81,0							50,0	37,5			61,0	46,0	61,0	46,0	
90	88,5	91,5									59,0	47,0		61,0	o boosessessessesses	61,0	
100	98,5	101,5												61,0	e ennemente	61,0	
110	108,5	111,5												69,0*		68,0*	
120	118,5	121,5												69,0*		68,0*	
130	128,0	132,0														68,0*	
140	138,0	142,0														68,0*	
150	148,0	152,0														68,0*	
160	158,0	162,0														68,0*	

Intermediate lengths on Ls possible

Other thread lengths in the range $\ge 4xd1$ to max. standard length permitted.

* Design C with 1gT= max. 65,0 mm



Material: cold rolled wire according to SPAX - Factory Standard

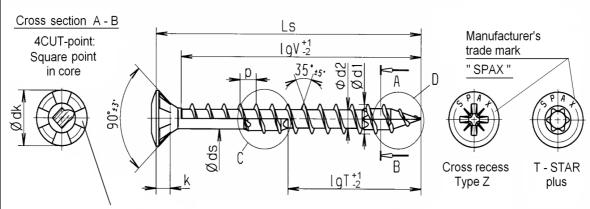
Stainless steel screws

D: 4CUT-point

C: alternatively with 4CUT-cutter*

Nomi	nal diameter	3,5	4,0	4,5	5,0	6,0
d1	thread size	3,5	4,0	4,5	5,1	6,1
	permissible tolerance		±0,20		±0	,25
dk	head diameter	8,6	9,6	10,6	11,6	13,6
	permissible tolerance	-0	,50		-0,60	
dk1	countersink diameter	4,9	5,0	5,4	5,9	6,9
	permissible tolerance			+0,20		
d2	core diameter	2,5	2,8	3,2	3,5	4,0
	permissible tolerance	-0	,30	-0	,40	+0,1 / -0,3
ds	shank diameter	2,60	3,00	3,30	3,75	4,30
	permissible tolerance			±0,10		
k	head height max.	1,8	1,9	2,0	2,2	3,1
p	thread pitch	2,1	2,4	2,7	3,0	3,6
	permissible tolerance			±0,1 x p		
T-STAI	R plus size	T15		T20		T30

T-STAR plu				T	15			T.	20			T.	30
Cross rece	ss size Type	e Z							2				
Ls	_		Standard thre	ad len)	4
Nom.dim.	min	max		lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT
16	16,0	17,5		15,0									
20	18,5	20,5		18,0		18,0							
25	23,5	25,5		23,0	18,0	23,0		22,5		22,0			
30	28,5	30,5		27,0	18,0	27,5	18,0	27,5		27,0		27,0	
35	33,5	36,0							25,0			32,0	24,0
40	38,5	41,0		37,0	23,0	37,5	23,0	37,0	25,0	37,0	27,0	37,0	24,0
45	43,5	46,0		40,0	30,0	42,5	30,0	42,0	30,0	41,0	30,0	41,0	29,0
50	48,5	51,0		40,0	32,0	47,5	32,5	47,0	32,5	46,0	32,0	46,0	32,0
55	53,5	56,0			35,0	50,0	35,0	52,0	37,0	51,0	37,0	51,0	37,0
60	58,5	61,0			35,0	50,0	35,0	57,0	37,0	56,0	37,0	56,0	37,0
65	63,5	66,0			40,0	50,0	37,5	59,0	42,0	61,0	41,0	61,0	41,0
70	68,5	71,0				50,0	37,5	59,0	42,0	61,0	41,0	61,0	41,0
75	73,5	76,0				50,0	37,5	59,0	42,0	61,0	41,0	61,0	41,0
80	78,5	81,0						59,0	47,0	61,0	46,0	61,0	46,0
90	88,5	91,5						59,0	47,0		61,0		61,0
100	98,5	101,5									61,0		61,0
110	108,5	111,5									69,0*		68,0*
120	118,5	121,5									69,0*		68,0*
130	128,0	132,0											68,0*
140	138,0	142,0											68,0*
150	148,0	152,0											68,0*
160	158,0	162,0											68,0*


Intermediate lengths on Ls possible

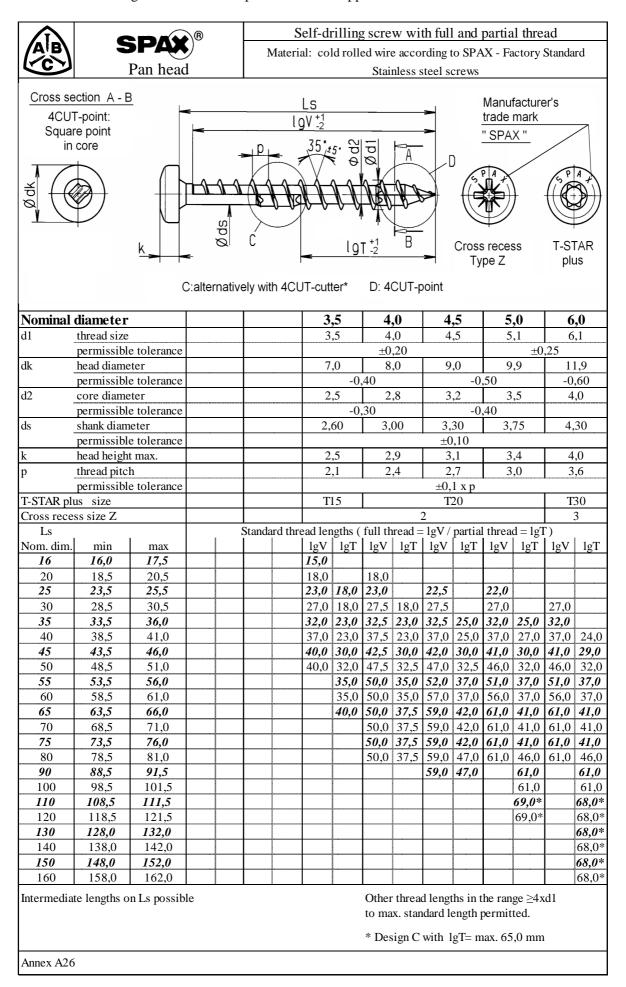
Other thread lengths in the range $\geq 4xd1$ to max. standard length permitted.

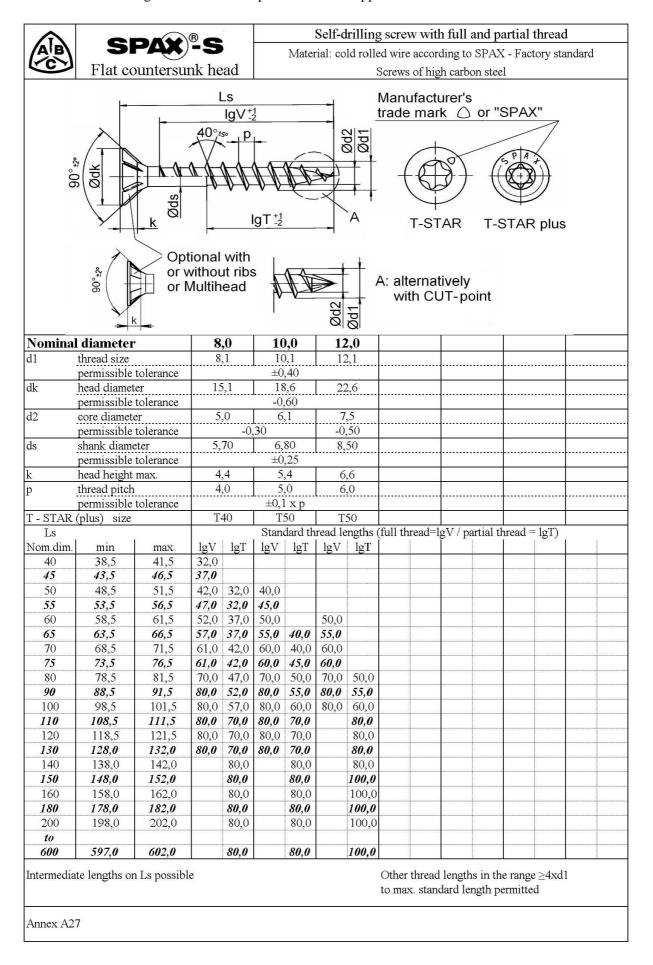
* Design C with 1gT= max. 65,0 mm

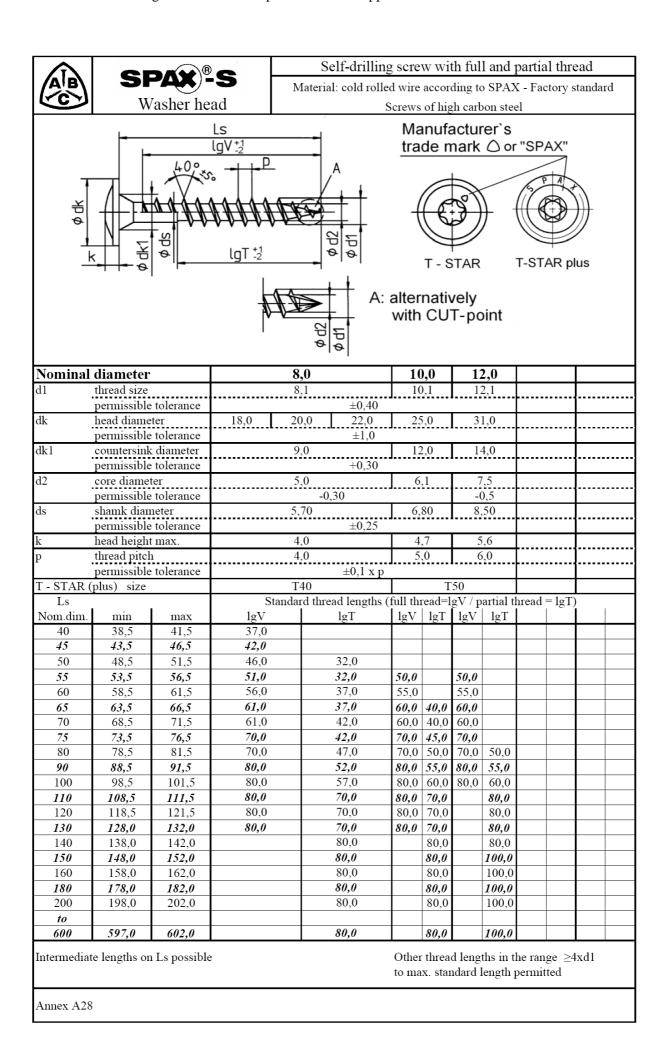
Material: cold rolled wire according to SPAX - Factory Standard Stainless steel screws

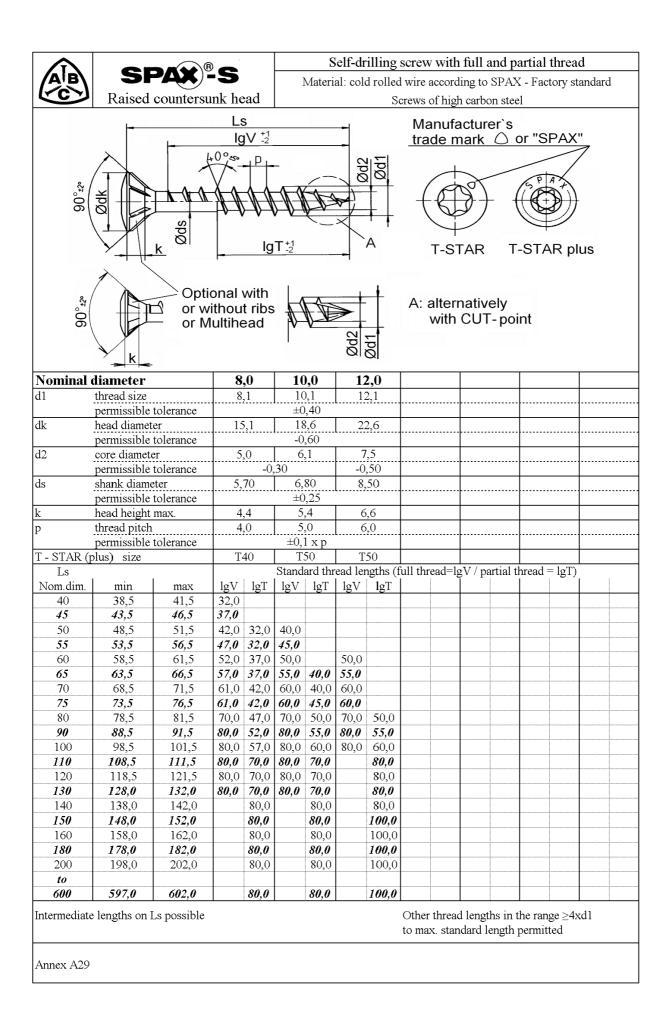
Optional with or without ribs

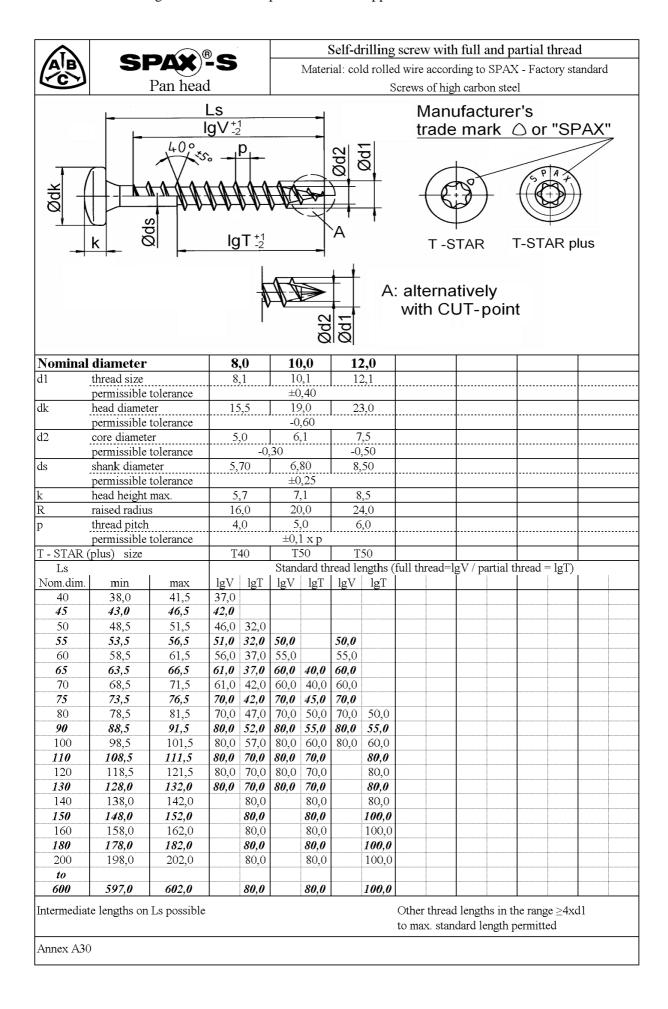
C: alternatively with 4CUT-cutter*

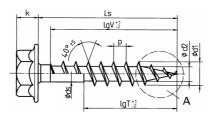

D: 4CUT-point

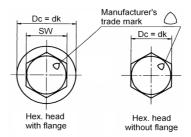

Nominal	diamerer	,					3	,5	4	,0	4	,5	5	,0	6	,0
d1	thread size						3	,5	4	,0	4	,5	5	,1	6	,1
		e tolerance								,20					,25	
dk	head diame	eter		***************************************		*********************	7	,0	8	,0	8	,8	9	,7	11	6, ا
		e tolerance							,40					,50		
d2	core diame						2	,5		,8	3	,2		,5		,0
		e tolerance							,30				,40			/ -0,3
ds	shank dian						2,	60	3,	00		30	3,	75	4,	30
	•	e tolerance										,10				
k	head heigh							,1		,4		,7	_	,9		,4
p	thread pitc						2	,1	2	,4		,7	3	,0	3	,6
		e tolerance										1 x p				
T-STAR pl							T	15				20				30
	ss size Type	e Z									2					3
Ls		1			Standa	rd thre										
Nom.dim.	min	max					lgV	lgT		lgT	lgV	lgT	lgV	lgT	lgV	lgT
20	18,5	20,5		ļ			16,0		16,0							
25	23,5	25,5						18,0			20,0		20,0			
30	28,5	30,5							25,0		25,0		25,0		24,0	
35	33,5	36,0		ļ					30,0		30,0		30,0			240
40	38,5	41,0		ļ		-	35,0					25,0		Commence & Commence Commence		24,0
45	43,5	46,0	****************	ļ					40,0				39,0	30,0	38,0	29,0
50	48,5	51,0							45,0			32,5	44,0	32,0		32,0
55	53,5	56,0		ļ					50,0		<i>49,0</i>		49,0	37,0	48,0	37,0
60 65	58,5	61,0		ļ					50,0		54,0		54,0	37,0		37,0
70	63,5 68,5	66,0		-				40,0	50,0 50,0		59,0 59,0	42,0 42,0	59,0 61,0	41,0	58,0 61,0	41,0
75	73,5	71,0		-				-	50,0	<u>.</u>	59,0 5 9,0	42,0	61,0	41,0	61.0	
80	73,3 78,5	76,0 81,0		-					50,0		59,0 59,0		61,0	41,0 46,0		41,0 46,0
90	88,5	91,5							30,0	37,3	59,0 59,0		01,0	61,0	61,0	61,0
100	98,5	101,5		 							39,0	4/,0		61,0		61,0
110	108,5	111,5						-						69,0*)	68,0*
120	118,5	121,5		-										69,0*		68,0*
130	128,0	132,0						-						U2,U		68,0*
140	138,0	142,0														68,0*
150	148,0	152,0						-				<u> </u>				68,0*
160	158,0	162,0								_						68,0*
100	130,0	102,0	l		1										l	00,0


Intermediate lengths on Ls possible


Other thread lengths in the range $\geq 4xd1$ to max. standard length permitted.


* Design C with 1gT= max. 65,0 mm



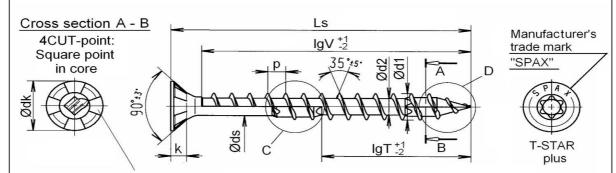


Material: cold rolled wire according to SPAX - Factory standard

Screws of high carbon steel

A: alternatively with CUT-point

				,	with 1	lange	e			wi	ithou	t flan	1 12,1 40 3 16 1 7,5 -0,50 0 8,50 25 0 8,0 0 6,0 x p artial thread = lgT lgT lgV lgT 50,0 55,0 40,0 60,0 440,0 60,0 45,0 70,0 55,0 80,0 55,0 60,0 80,0 70,0 80,0 70,0 80,0 80,0 80,0 8			
Nominal	diameter		8.	,0	10	0,0	12	2,0	8.	,0	10),0	12	2,0		
d1	thread size		8	,1	10),1	12	2,1	8	,1	10),1	12	2,1		
	permissible	e tolerance			±0	,40					±0	,40				
SW	width acros	ss flat	1	0	1	3	1	6	1	0	1	3	1	6		
Dc	flange dian	nerer	17	,0	20),8	24	-,7								
	permissible	e tolerance			-1,	00										
d2	core diame	ter	5	,0	6	,1	~~~~~~~~~	,5	5	,0		,1				
	permissible	e tolerance			,30			50			,30					
ds	shank diam		5,	70		80	8,	50	5,	70		80	8,	50		
	permissible					,25						,25				
k	head height			,5		,7	12			,0		,0				
p	thread pitcl		4	,0		,0	6	,0	4	,0	••••••	,0	6	,0		
	permissible	e tolerance				хр						хр				
Ls	1	Ī													,	1
Nom.dim.	min	max	lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT	lgV	lgT		
40	38,5	41,5	37,0						37,0							
45	43,5	46,5	42,0						42,0							
50	48,5	51,5		32,0						32,0			_			
55	53,5	56,5		32,0			50,0			32,0						
60	58,5	61,5		37,0			55,0			37,0						
65	63,5	66,5		37,0			60,0									
70	68,5	71,5		42,0												
75	73,5	76,5		42,0			70,0		70,0							
80	78,5	81,5		47,0					70,0							
90	88,5	91,5		52,0												
100	98,5	101,5					80,0						80,0			
110	108,5	111,5		70,0					80,0							
120	118,5	121,5		70,0					80,0							
130	128,0	132,0	80,0	70,0	80,0				80,0		80,0					
140	138,0	142,0		80,0		80,0		80,0		80,0						
150	148,0	152,0		80,0		80,0		100,0		80,0		grande and an arrange				
160	158,0	162,0		80,0		80,0		100,0		80,0						
180	178,0	182,0		80,0		80,0		100,0		80,0		80,0				
200	198,0	202,0		80,0		80,0		100,0		80,0		80,0		100,0		
to																
600	597,0	602,0		80,0		80,0		100,0		80,0		80,0		100,0		


Intermediate lengths on Ls possible

Other thread lengths in the range $\ge 4xd1$ to max. standard length permitted

Material: cold rolled wire according to SPAX - Factory standard Screws of high carbon steel

Optional with or without ribs

C: alternatively with 4CUT-cutter

D: 4CUT-point

Nominal	diameter		8	,0	10	0,0										
d1	thread size		8),1					S		1););	
100.0	permissible	tolerance		,40		,40										
dk	head diame		15			3,6									 	
	permissible			60		,60							1			,
d2	core diamet			,0		,1										
	permissible			,20		,20							1			
ds	shank diam			70		80										
	permissible			,25	±0	,25							1			
k	head height		4	,4	5	,4										
р	thread pitch			,8		,0										
•	permissible		±0,1	хр	±0,	lхр							1			
T-STAR pl	us size			40		50										
Ls					Stand	lard thi	ead le	ngths	(full th	read=	lgV /	partial	thread	= lgT))	
Nom.dim.	min	max	lgV	lgT												
40	38,5	41,5	32,0		C34.00 - 1200-1000								No. Proff Marie Committee		5-00-11106-627 T-100-525-00-0	
45	43,5	46,5	37,0													
50	48,5	51,5	42,0	32,0	40,0		00 00 10° 10 1000000				X 100 00 100 100 100 100 100 100 100 100		7 s 4 s 10 40 s s 44 f		A STATE OF THE PARTY OF THE PAR	
55	53,5	56,5	47,0	32,0	45,0											
60	58,5	61,5		37,0	50,0											
65	63,5	66,5	57,0	37,0	55,0											
70	68,5	71,5	61,0	42,0	60,0						20 10 10 10 10 10 10 10 10 10 10 10 10 10					
75	73,5	76,5	61,0	42,0	60,0											
80	78,5	81,5	70,0	47,0	70,0	50,0										
90	88,5	91,5	80,0	52,0	80,0	55,0										
100	98,5	101,5	80,0	57,0	80,0	60,0										
110	108,5	111,5	80,0	70,0	80,0	80,0										
120	118,5	121,5	80,0	70,0	80,0	80,0										
130	128,0	132,0	80,0	70,0	80,0	80,0										
140	138,0	142,0		80,0		80,0										
150	148,0	152,0		80,0		80,0										
160	158,0	162,0		80,0		80,0										
180	178,0	182,0		80,0		80,0										
200	198,0	202,0		80,0		80,0										
to																
600	597.0	602,0		80,0		80,0										

Intermediate lengths on Ls possible

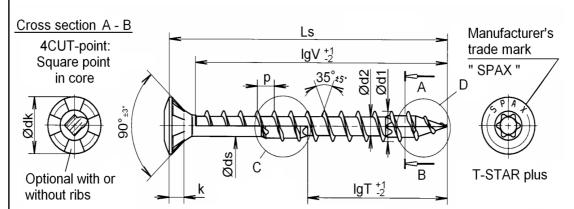
Other thread lengths in the range ≥4xd1 to max. standard length permitted

Material: cold rolled wire according to SPAX - Factory standard Screws of high carbon steel

C:alternatively with 4CUT-cutter

D: 4CUT-point

T-STAR plus


Nominal	diameter			8,0			0,0
d1	thread size			8,1		1	0,0
	permissible	S. VAC SCHOOL SCHOOL STATE OF THE STATE OF T		$\pm 0{,}40$		±(,40
dk	head diame		18,0 20),0 22,0	24,0	24,0 2	5,0 26,0
	permissible	e tolerance		±1,0			1,0
dk1	countersinl			9,00			2,00
	permissible			+0,50	service and committee and the property of the state of th		0,5
12	core diame			5,0			5,1
	permissible			$\pm 0,\!20$),20
is	shank diam			5,70			,80
	permissible			$\pm 0,25$),25
K	head heigh			4,3			1,7
p	thread pitcl			4,8			5,0
	permissible	tolerance		±0,1 x p			1 x p
T-STAR p	lus size			T40			50
Ls	1					lgV / partial thread	
Nom.dim.		max	lgV		lgT	lgV	lgT
40	38,5	41,5	37,0				
45	43,5	46,5	42,0				
50	48,5	51,5	46,0		32,0	40,0	
55	53,5	56,5	51,0		32,0	45,0	
60	58,5	61,5	56,0		37,0	50,0	
65	63,5	66,5	61,0		37,0	55,0	
70	68,5	71,5	61,0		12,0	60,0	
75	73,5	76,5	70,0		12,0	70,0	50,0
80	78,5	81,5	70,0		17,0	80,0	55,0
90	88,5	91,5	80,0		52,0	80,0	60,0
100	98,5	101,5	80,0		57,0	80,0	80,0
110	108,5	111,5	80,0		70,0	80,0	80,0
120	118,5	121,5	80,0		70,0	80,0	80,0
130	128,0	132,0	80,0		70,0	80,0	80,0
140	138,0	142,0			30,0		80,0
150	148,0	152,0			30,0		80,0
160	158,0	162,0			30,0		80,0
180	178,0	182,0			30,0		80,0
200	198,0	202,0		8	30,0		80,0
to							
600	597,0	602,0		8	30,0		80,0

Intermediate lengths on Ls possible
= Preferred size

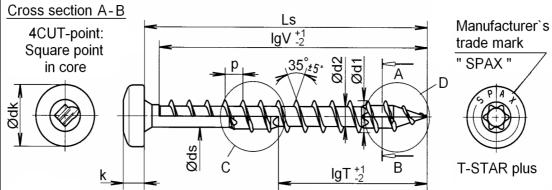
Other thread lengths in the range ≥4xd1 to max. standard length permitted

Material: cold rolled wire according to SPAX - Factory standard Screws of high carbon steel

C: alternatively with 4CUT-cutter

D: 4CUT-point

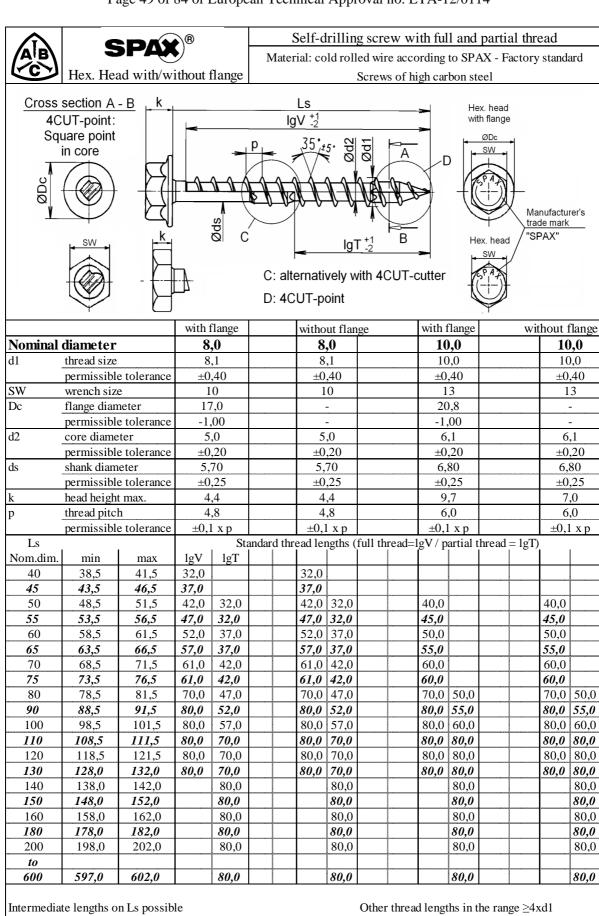
Nominal	diameter		8.	,0	10	0,0										
d1	thread size		8	,1	10),0										
	permissible	e tolerance	±0	,40	±0	,40	•	***************************************		•••••						
dk	head diame	eter	15	5,1	18	3,6										
	permissible	e tolerance	-0,	,60	-0,	,60	***************************************	***************************************		••••••••			•			***************************************
d2	core diame	eter	5.	,0	6	,1										
	permissible	e tolerance	±0	,20	±0	,20										
ds	shank diam	eter	5,	70	6,	80										
	permissible	e tolerance	±0	,25	±0	,25										
k	head heigh	t max.	4	,4	5	,4										
p	thread pitc	h	4	,8	6	,0										
	permissible	e tolerance	±0,1	lхр	±0,1	lхр										
T-STAR pl	us size		T/			50										
Ls	•	•	l .		andaro	l threa	d leng	ths (fu	ıll thr	ead=1	gV / pa	artial	thread	l = lgT)	
Nom.dim.	min	max	lgV	lgT												
40	38,5	41,5	32,0													
45	43,5	46,5	37,0													
50	48,5	51,5		32,0												
55	53,5	56,5		32,0			p-000000000000000000000000000000000000									
60	58,5	61,5		37,0												
65	63,5	66,5	~~~~	37,0												
70	68,5	71,5		42,0												
75	73,5	76,5		42,0												
80	78,5	81,5			70,0	<u> </u>										
90	88,5	91,5	AND DESCRIPTION OF THE PARTY OF		80,0											
100	98,5	101,5	*********		80,0	·										
110	108,5	111,5			80,0							ļ				
120	118,5	121,5			80,0	ş										
130	128,0	132,0	80,0	70,0		80,0						ļ				
140	138,0	142,0		80,0		80,0										
150	148,0	152,0		80,0		80,0										
160	158,0	162,0		80,0		80,0			***************************************			ļ				
180	178,0	182,0		80,0		80,0						ļ		ļ		
200	198,0	202,0		80,0		80,0										
to																
600	597,0	602,0		80,0		80,0										


Intermediate lengths on Ls possible

Other thread lengths in the range ≥4xd1 to max. standard length permitted

Material: cold rolled wire according to SPAX - Factory standard Screws of high carbon steel

Nominal	diameter	,	8	,0	10),0										
d1	thread size	;	8	,1	10	0,0										
	permissibl	e tolerance	±0	,40	±0	,40										
dk	head diame	eter	15	5,5	19	0,0										
	permissibl	e tolerance	-0,	,60	-0.	,60										
d2	core diame	eter	5	,0	6	,1										
	permissibl	e tolerance	±0	,20	±0	,20		***************************************						***************************************		***************************************
ds	shank diam	neter	5,	70	6,	80										
	permissibl	e tolerance	±0	,25	±0	,25	***************************************				••••••		***************************************			
k	head heigh	t max.	6	,0	7	,1										
p	thread pitc	h	4	,8	6	,0										
i	permissibl	e tolerance	±0,1	lхр	±0,1	lхр										
T-STAR pl	us size		T/	40	T:	50										
Ls	_	_		S	tandar	d thre	ad len	gths (full th	read=	lgV / p	partial	threac	l = lgT	()	_
Nom.dim.	min	max	lgV	lgT						0000000						
40,0	38,5	41,5	37,0													
45,0	43,5	56,5	42,0													
50	48,5	51,5	46,0	32,0	40,0											
55	53,5	56,5	51,0	32,0	45,0											
60	58,5	61,5	56,0	37,0	50,0											
65	63,5	66,5	61,0	37,0	55,0											
70	68,5	71,5	61,0	42,0	60,0											
75	73,5	76,5	70,0	42,0	60,0											
80	78,5	81,5		47,0		g										
90	88,5	91,5		52,0		55,0				<u> </u>						
100	98,5	101,5	80,0	57,0	80,0	60,0										
110	108,5	111,5		70,0		80,0										
120	118,5	121,5		70,0												
130	128,0	132,0	80,0	70,0	80,0	80,0										
140	138,0	142,0		80,0		80,0										
150	148,0	152,0		80,0		80,0										
160	158,0	162,0		80,0		80,0										
180	178,0	182,0		80,0		80,0										
200	198,0	202,0		80,0		80,0										
to																

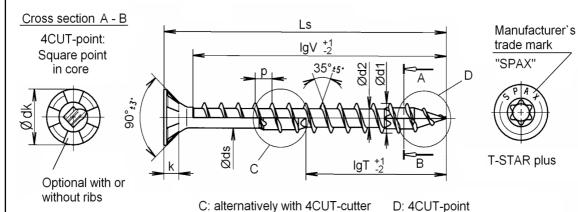

597,0 Intermediate lengths on Ls possible

602,0

80,0

80,0

Other thread lengths in the range $\ge 4xd1$ to max. standard length permitted


to max. standard length permitted

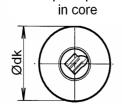
Material: cold rolled wire according to SPAX - Factory standard

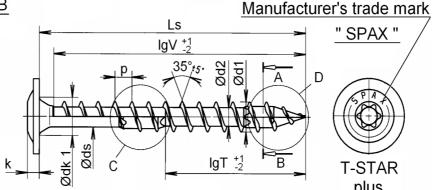
Stainless steel screws

Nominal	diameter		8	,0												
d1	thread size		8	,1												
	permissible	e tolerance	±0	,40		•••••		***************************************		***************************************			•			***************************************
dk	head diame	ter	15	5,1												
	permissible	e tolerance	-1	,0												
d2	core diame	ter	5	,3												
	permissible	e tolerance		,20												
ds	shank diam	eter	5,	70												
	permissible	e tolerance	±0	,25												
k	head heigh	t max.		,4												
p	thread pitcl	h		,8												
	permissible	e tolerance	±0,1	lхр												
T-STAR pl	us size		T/	40												
Ls	•	•			Standa	ard thr	ead lei	gths (full th	read=	lgV / p	artial 1	hread	= lgT		
Nom.dim.	min	max		lgT												
40	38,5	41,5	32,0													
45	43,5	46,5	37,0													
50	48,5	51,5		32,0												
55	53,5	56,5	47,0													
60	58,5	61,5		37,0												
65	63,5	66,5	57,0												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
70	68,5	71,5		42,0												
75	73,5	76,5	61,0													
80	78,5	81,5		47,0												
90	88,5	91,5	80,0													
100	98,5	101,5		57,0												
110	108,5	111,5	80,0												(
120	118,5	121,5		70,0											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
130	128,0	132,0	80,0													
140	138,0	142,0		80,0												
150	148,0	152,0		80,0						ļ						
160	158,0	162,0		80,0											,	
180	178,0	182,0		80,0										ļ		
200	197,0	202,0		80,0						ļ				ļ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
to										-						
600	597,0	602,0		80,0												

Intermediate lengths on Ls possible

Other thread lengths in the range ≥4xd1 to max. standard length permitted



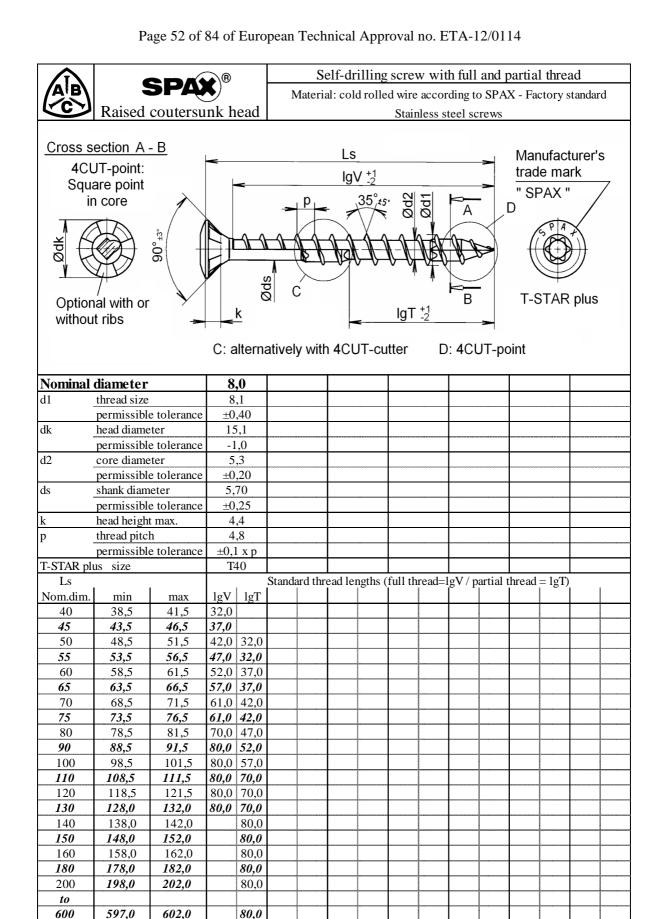

Material: cold rolled wire according to SPAX - Factory standard Stainless steel screws

"SPAX"

T-STAR plus

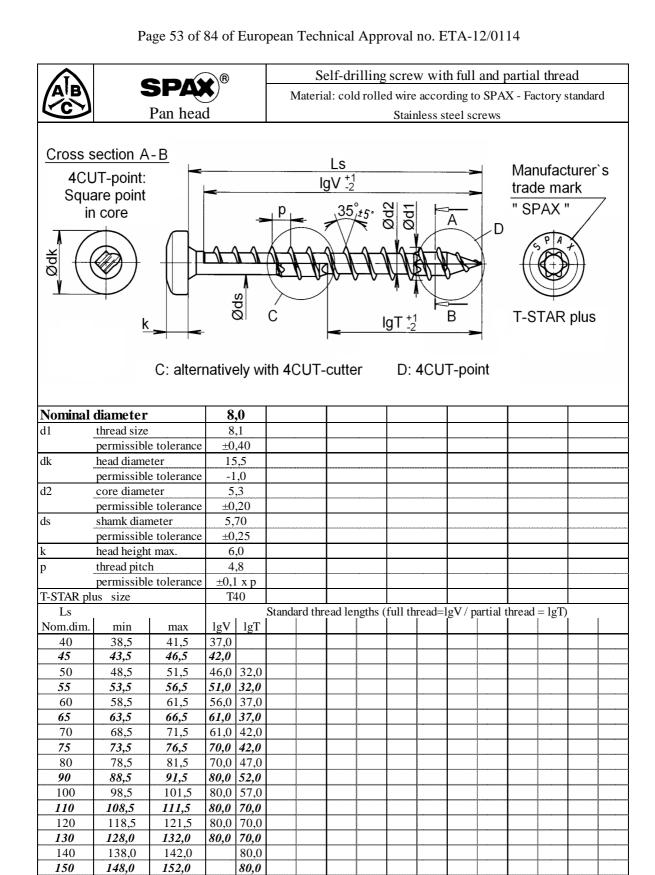
Cross section A - B 4CUT-point: Square point

C:alternatively with 4CUT-cutter D: 4CUT-point


Nominal	diameter			8.	,0						
d1	thread size			8.	,1						
	permissible	e tolerance		±0	,40						
dk	head diame	eter	18,0	20,0	22,0	24,0					
	permissible	e tolerance		±1	,0						
dk1	countersin	k diameter		9,0	00						
	permissible	e tolerance		+0	,50						
d2	core diame	eter		5.	,3						
	permissible	e tolerance		±0	,20						
ds	shank diam	eter		5,	70						
	permissible	e tolerance		±0.	,25						
k	head heigh	t max.		4.	,3						
p	thread pitc	h		4	,8						
	permissible	e tolerance		±0,1	хр						
T-STAR pl	us size			T ²	40						
Ls				Standard thro	ead lengths (full thread=	lgV / part	ial threa	ad = 1g	(T;	
Nom.dim.	min	max	lg	gV	1	gT					
40	37,5	41,5	37	7,0							
45	43,5	46,5	42	2,0							
50	48,5	51,5	46	5,0	32	2,0					

Nom.dim.	min	max	lgV	lgT	10000000	
40	37,5	41,5	37,0			
45	43,5	46,5	42,0			
50	48,5	51,5	46,0	32,0		
55	53,5	56,5	51,0	32,0		
60	58,5	61,5	56,0	37,0	0.000	
65	63,5	66,5	61,0	37,0		
70	68,5	71,5	61,0	42,0		
75	73,5	76,5	70,0	42,0		
80	78,5	81,5	70,0	47,0		
90	88,5	91,5	80,0	52,0		
100	98,5	101,5	80,0	57,0		
110	108,5	111,5	80,0	70,0		
120	118,5	121,5	80,0	70,0	A COLOR	
130	128,0	132,0	80,0	70,0		
140	138,0	142,0		80,0		
150	148,0	152,0		80,0		
160	158,0	162,0		80,0	0000	
180	178,0	182,0		80,0		
200	197,0	202,0		80,0		
to						
600	597,0	602,0		80,0		

Intermediate	lengths	on Ls	possible
--------------	---------	-------	----------


= Preferred size

Other thread lengths in the range $\geq 4xd1$ to max. standard length permitted

Intermediate lengths on Ls possible

Other thread lengths in the range $\ge 4xd1$ to max. standard length permitted

597,0 Intermediate lengths on Ls possible

158,0

178,0

198,0

162,0

182,0

202,0

202,0

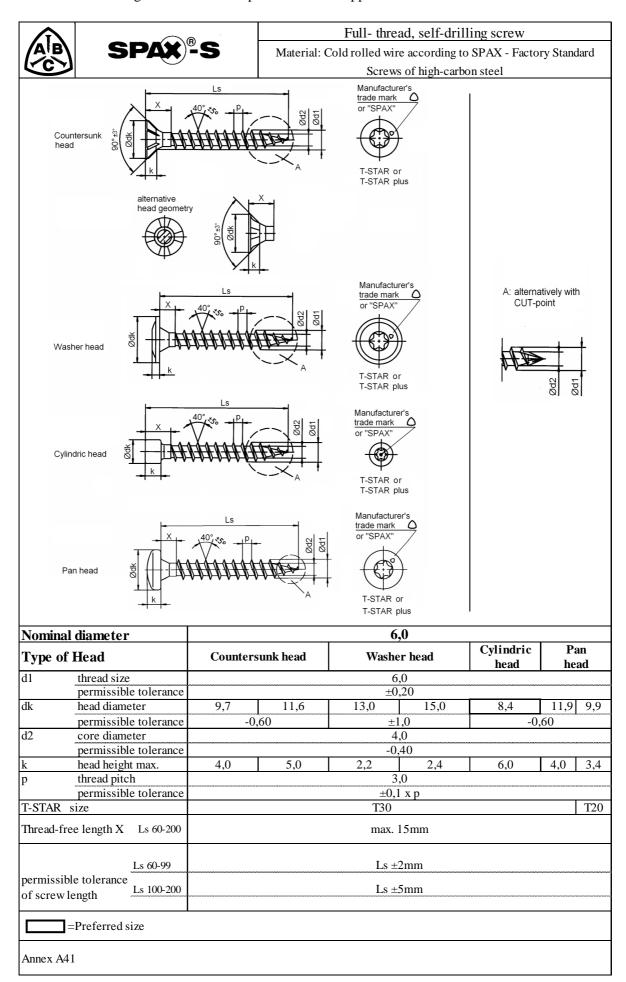
80,0

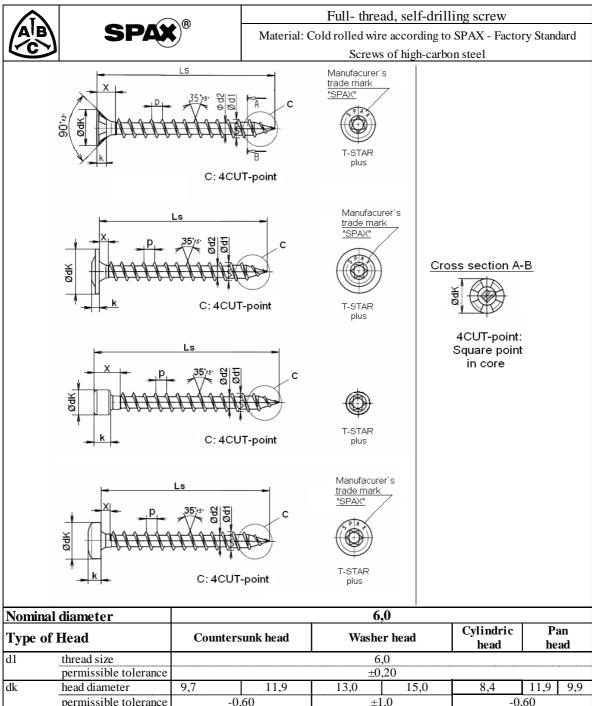
80,0

80,0

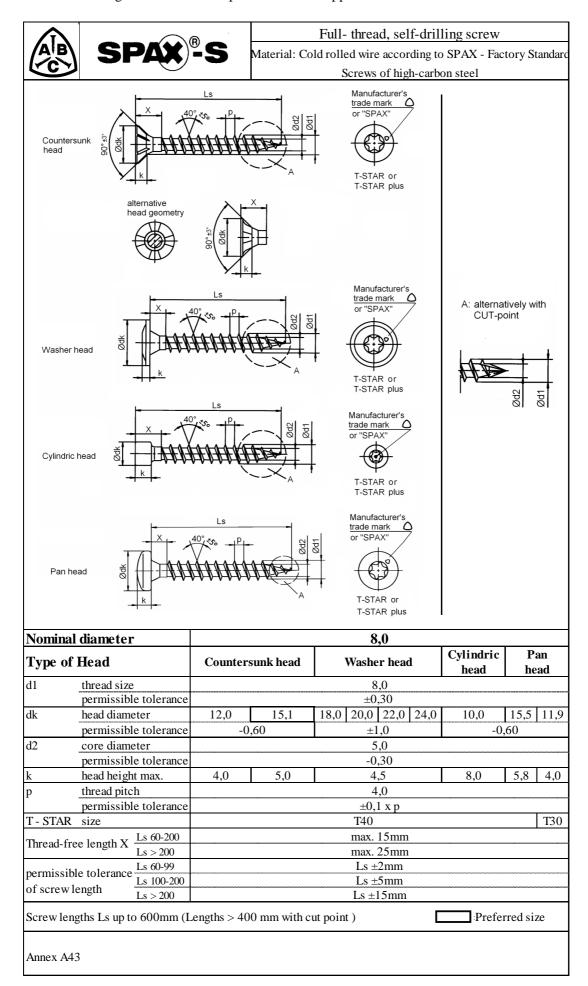
80,0

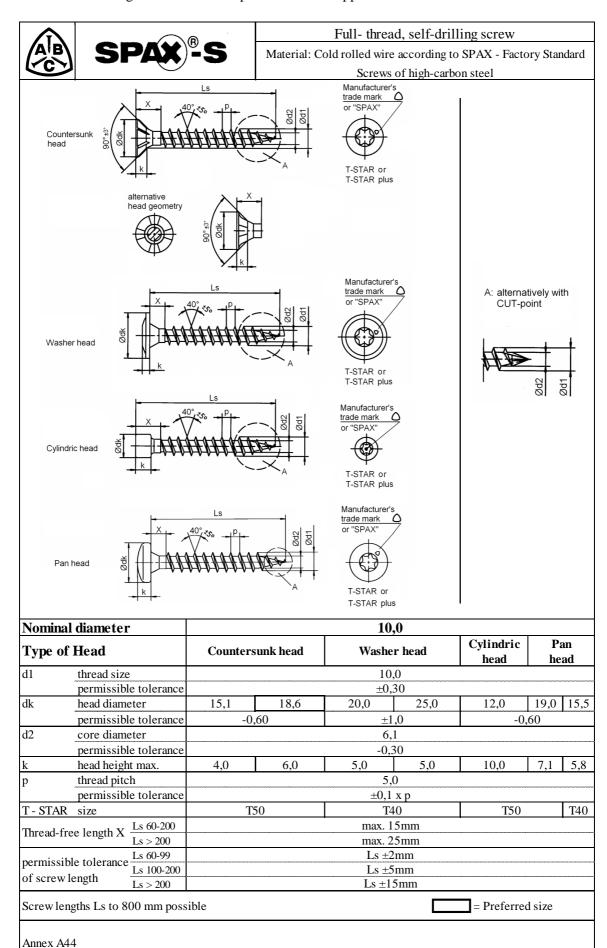
Other thread lengths in the range $\ge 4xd1$ to max. standard length permitted

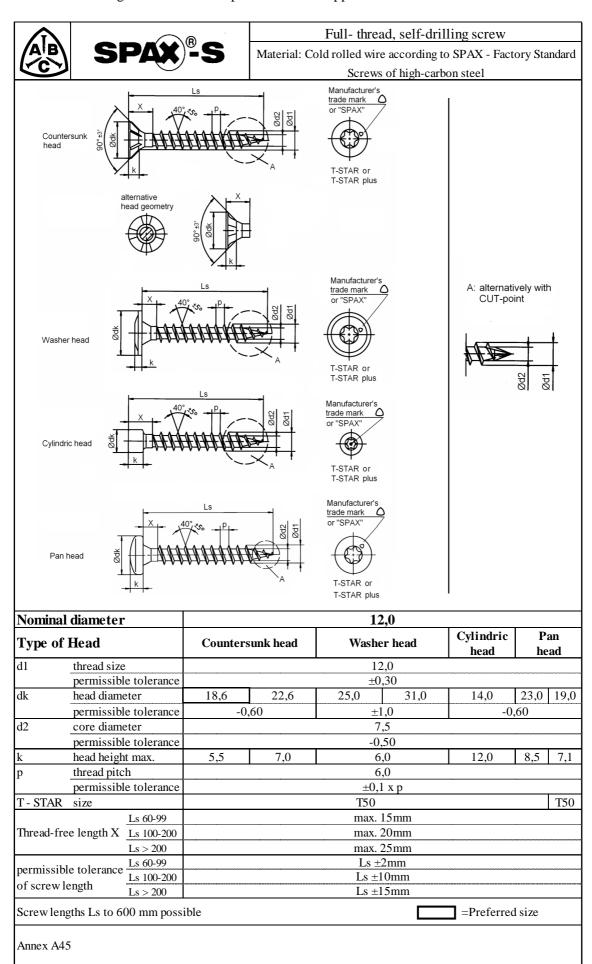

Annex A40

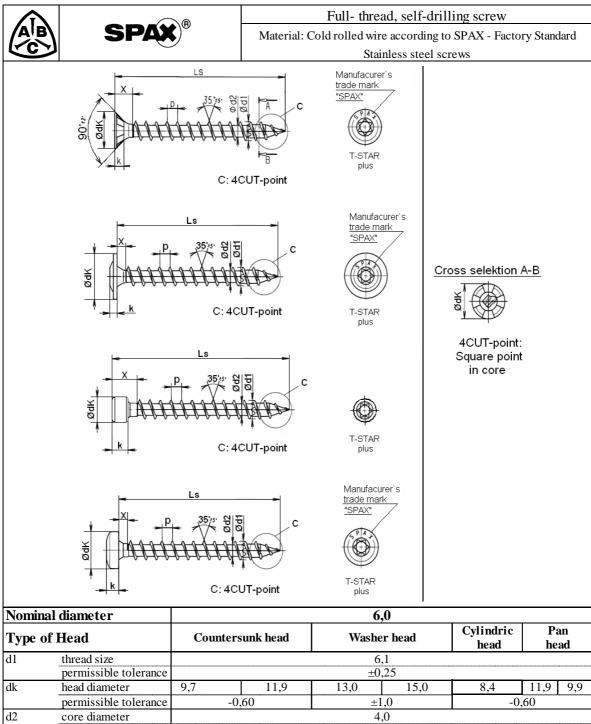

160

180

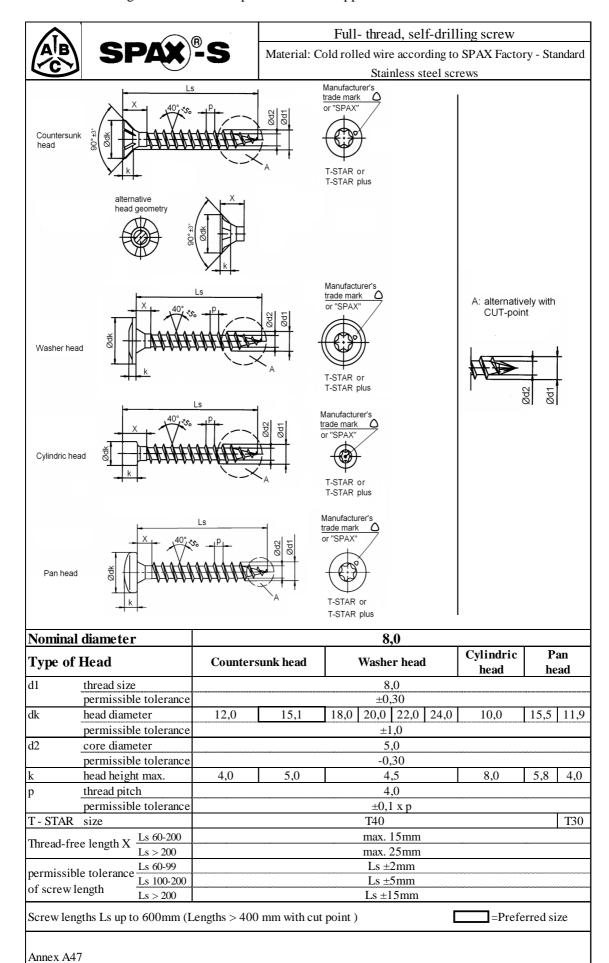

200

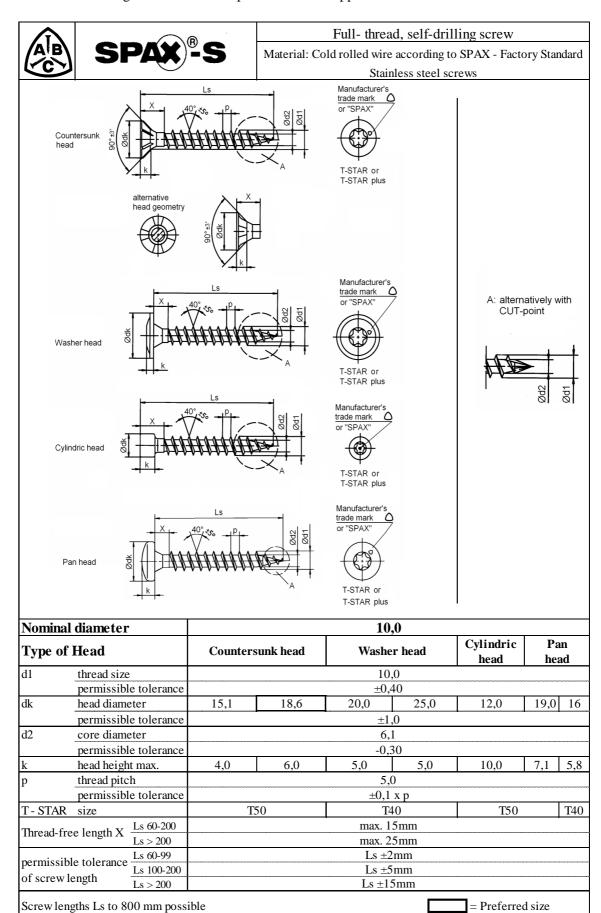

to 600

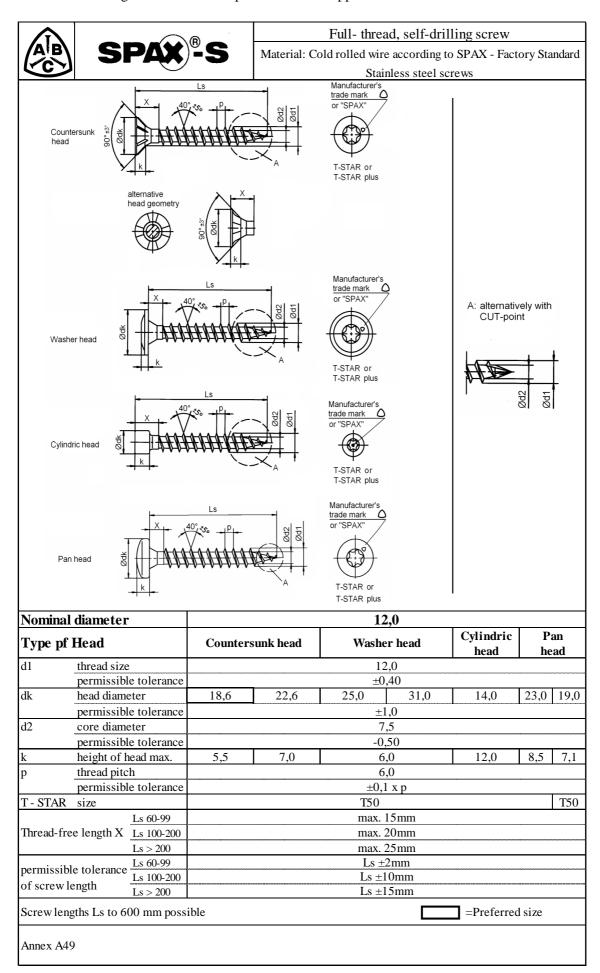




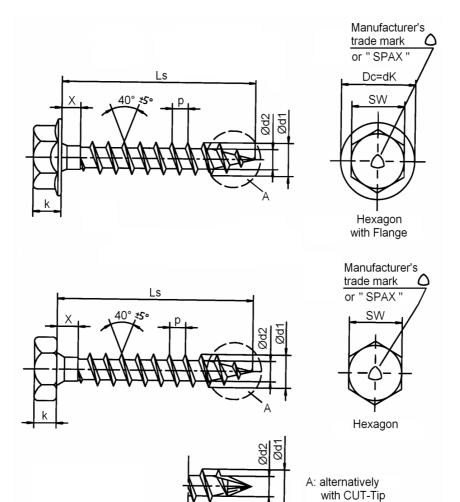
Nominai diameter			0,0						
Type of Head			Countersunk head Washer head		r head	Cylindric head	Pan head		
d1 thread size					6,	0			
	permissibl	e tolerance	***************************************		±0,	20			
dk	head diame	eter	9,7	11,9	13,0	15,0	8,4	11,9 9,9	
	permissibl	e tolerance	-(),60	±1	,0	-0,),60	
d2	core diame	eter			4,	.0	_		
	permissibl	e tolerance			-0,	40			
k	head heigh	t max.	4,0	5,0	2,2	2,4	6,0	4,0 3,4	
p	thread pitc	h			3,	6			
	permissibl	e tolerance	±0,1 x p						
T-STAI	R plus size		T30 T20						
Thread	-free length X	Ls 60-200	max. 15mm						
Ls 60-99		Ls ±2mm							
permissible tolerance of screw length Ls 100-200					Ls ±	5mm	***************************************		
	=Preferred s	size							
Annex	A42								
								· ·	







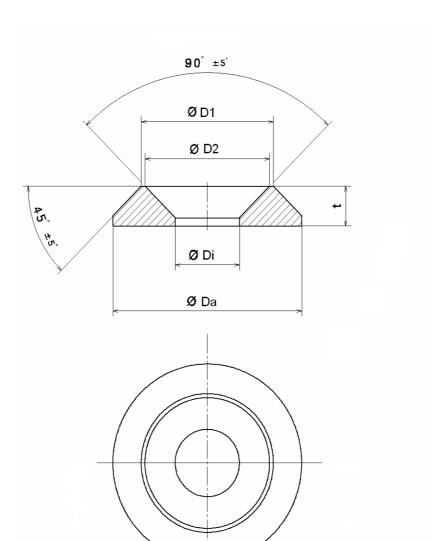
Nominal diameter			6,0							
Type of Head			Countersunk head Washer head		Cylindric head		an ad			
d1	thread size				6	,1				
	permissible	tolerance			±0	,25	_			
dk	head diame	ter	9,7	11,9	13,0	15,0	8,4	11,9	9,9	
	permissible	tolerance	-	0,60	±1	,0	-0,	60		
d2	core diame	ter			4	,0				
	permissible	tolerance			+0,1	/-0,3				
k	head height	max.	4,0	5,0	2,2	2,4	6,0	4,0	3,4	
p	thread pitch	1			3	,6				
_	permissible tolerance		±0,1 x p							
T-STA	R plus size		T30 T20					T20		
Thread	Thread-free length X Ls 60-200		max. 15mm							
	Ls 60-99		Ls ±2mm							
permissible tolerance of screw length Ls 100-200		Ls ±5mm								
	=Preferred si	ze								
Annex	A46									



Full- thread, self-drilling screw

Material: Cold rolled wire according to SPAX - Factory Standard Screws of high-carbon steel

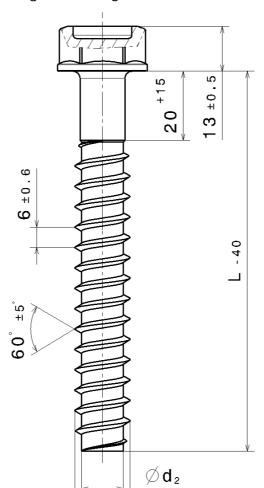
Nominal diameter		8,0		10,0		12,0		
Type of Head		without flange	with flange	without flange	with flange	without flange	with flange	
SW	wrench siz	e	1	0	1	3	16	
k	head heigh	t max.	6,00	8,5	7,00	9,7	8,00	12,1
Dc	diameter o	f flange		15,5		19,5		22,5
	permissibl	e tolerance			<u> </u>	-1		
d1	thread diar	neter	8.	,0	10,0		12,0	
permissible tolerance		e tolerance	±0,30					
d2	core diame	eter	5,0		6,1		7,5	
	permissibl	e tolerance	-0,30			-0,50		
p	thread pitc	h	4,0 5,0		6,0			
	permissible tolerance ±0,1 x p				lхр			
		Ls 60-99	max, 15mm		max, 15mm		max. 15mm	
thread-	thread-free length X Ls 100-200		max. 15mm		max. 15mm		max. 20mm	
Ls > 200		max. 25mm		max. 25mm		max. 25mm		
permissible tolerance Ls 60-99		Ls ±2mm			Ls ±2mm			
		Ls 100-200		Ls ±	5mm		Ls ±10mm	
of screw length $\frac{1}{\text{Ls}} > 200$		Ls ±15mm			Ls ±15mm			


 $Screw \ lengths \ Ls \ up \ to \ 600mm \ possible \ (at \ a \ nominal \ diameter \ of \ 8,0mm \ lengths > 400mm \ with \ CUT-point)$

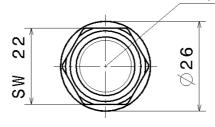
Washer for screws with countersunk and raised countersunk head

Material: machining steel
Dimensions in mm

Thread size	6,0	8,0	10,0	12,0	Tolerance
ØDa	18,0	25,0	32,0	40,0	
ØDi	6,5	8,5	11,0	13,0	1
ØD1	13,5	17,5	22,5	27,0	± 0,3
ØD2	12,5	16,5	21,5	26,0	1
t	3,5	5,0	5,6	7,0	1



Threaded rod with full thread


Material: Steel or Stainless steel

Design with hexagon head

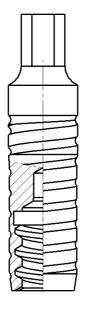
L
800
1000
1200
1400
1600
1800
2000
2200

Manufacturer's trade mark: ABC or SPAX

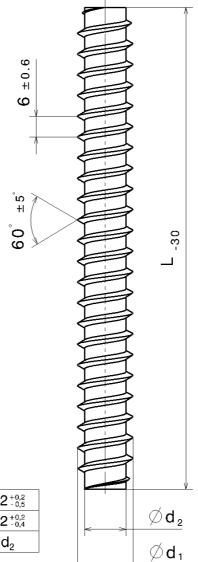
 \emptyset d₁

Stainless steel	16 +0.2	12+0,2
Steel	16 +0,2	12+0,2
	Ø d ₁	$Ød_2$

- Other lengths 100 3000 mm possible
- Length can be changed by cutting the threaded part

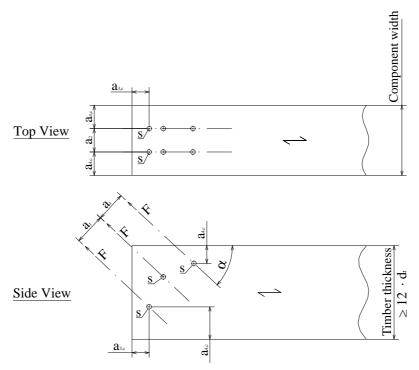


Threaded rod with full thread


Material: Steel or Stainless steel

Design without head

Screw adapter available as accessory


Stainless steel	16 +0,2	12+0,2
Steel	16 +0,2	12+0,2
	Ø d₁	Ø d ₂

- Other lengths 100 3000 mm possible
- Length can be changed by cutting the threaded part

Annex B Minimum distances and spacing

Minimum distances and spacing for exclusively axially loaded SPAX screws with CUT or 4CUT drill tip or with $d \le 8$ mm in non-predrilled holes in members of solid timber, glued laminated timber or similar glued products

Single configuration

grain direction screw axis

S centroid of the part of the screw in the timber

$$15^{\circ} \le \alpha \le 90^{\circ}$$


 $a_1 \cdot a_2 \ge 25 \cdot d^2$

 $\begin{array}{l} a_1 & \geq 5 \cdot d \\ a_2 & \geq 2, 5 \cdot d \\ a_{3,c} \geq 5 \cdot d \\ a_{4,c} \geq 4 \cdot d \\ & \geq 3 \cdot d \end{array}$ for screws with CUT or 4CUT drill tip

Minimum distances and spacing see also 4.2

Minimum distances and spacing for exclusively axially loaded SPAX screws with CUT or 4CUT drill tip or with $d \le 8$ mm in non-predrilled holes in members of solid timber, glued laminated timber or similar glued products

Crosswise configuration

S centroid of the part of the screw in the timber

$$15^{\circ} \le \alpha \le 90^{\circ}$$

$$\begin{array}{ll} a_1 & \geq 5 \cdot d \\ a_2 & \geq 1, 5 \cdot d \\ & \geq 2, 5 \cdot d \cdot (1 - \alpha_k \, / \, 180^\circ) \end{array} \qquad \begin{array}{ll} \text{for } 70^\circ < \alpha_k \leq 90^\circ \\ & \geq 2, 5 \cdot d \cdot (1 - \alpha_k \, / \, 180^\circ) \end{array} \qquad \text{for } 30^\circ \leq \alpha_k \leq 70^\circ \\ a_{3,c} \geq 5 \cdot d \\ a_{4,c} \geq 4 \cdot d \\ & \geq 3 \cdot d \end{array} \qquad \qquad \text{for screws with CUT or 4CUT drill tip} \\ a_1 \cdot a_2 \geq 25 \cdot d^2 \end{array}$$

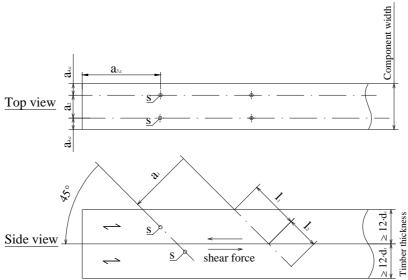
Minimum distances and spacing see also 4.2

Mechanically jointed beams

SPAX screws with a full thread or threaded rods may be used for connections in structural members which are composed of several parts in mechanically jointed beams or columns.

The axial slip modulus K_{ser} of a screw or threaded rod with a full thread for the serviceability limit state should be taken independent of angle α to the grain as:

 $C = K_{ser} = 780 \cdot d^{0.2} \cdot \ell_{ef}^{0.4}$ [N/mm] for screws or threaded rods in softwood


Where

d outer thread diameter [mm]

 $\ell_{\rm ef}$ penetration length in the structural member [mm]

Axially loaded SPAX screws or threaded rods in solid or glued laminated timber or laminated veneer lumber

Single configuration

grain direction

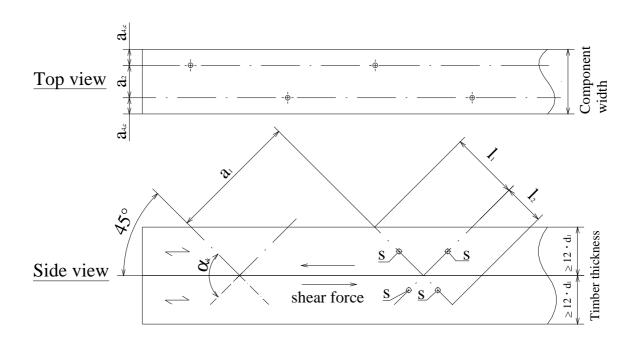
--- screw axis

S centroid of the part of the screw in the timber

$$a_1 \ge 5 \cdot d$$

$$a_2 \ge 2.5 \cdot d$$

$$a_{3,c} \ge 5 \cdot d$$


$$a_{4,c} \ge 4 \cdot d$$

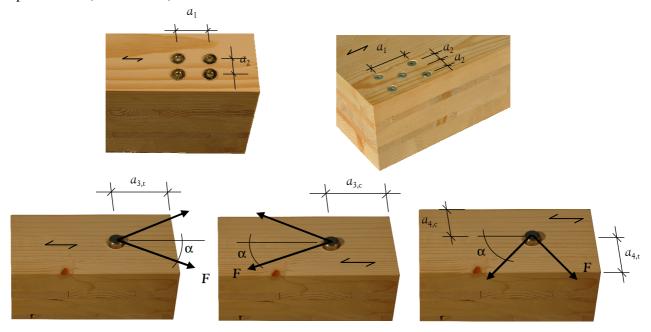
 \geq 3 · d for screws with CUT or 4CUT drill tip

 $a_1\cdot a_2 \,{\ge}\, 25\cdot d^{\boldsymbol{2}}$

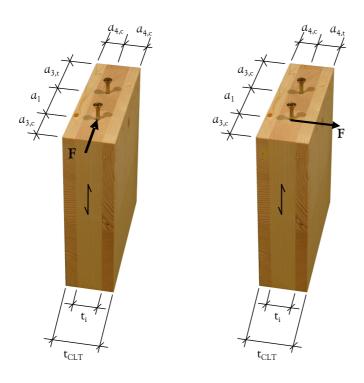
Minimum distances and spacing see also 4.2

Axially loaded SPAX screws or threaded rods in solid or glued laminated timber or laminated veneer lumber Crosswise configuration

grain direction screw axis


S centroid of the part of the screw in the timber

 $\begin{array}{ll} a_1 & \geq 5 \cdot d \\ a_2 & \geq 2, 5 \cdot d \\ a_{3,c} \geq 5 \cdot d \\ a_{4,c} \geq 4 \cdot d \\ & \geq 3 \cdot d \end{array} \qquad \text{for screws with CUT or 4CUT drill tip}$


Minimum distances and spacing see also 4.2

Axially or laterally loaded screws in the plane or edge surface of cross laminated timber

Definition of spacing, end and edge distances in the plane surface unless otherwise specified in the technical specification (ETA or hEN) for the cross laminated timber:

Definition of spacing, end and edge distances in the edge surface unless otherwise specified in the technical specification (ETA or hEN) for the cross laminated timber:

Annex C Compression reinforcement

SPAX screws or threaded rods with a full thread may be used for reinforcement of timber members with compression stresses at an angle α to the grain of $45^{\circ} \le \alpha \le 90^{\circ}$. The compression force must be evenly distributed over all screws.

The characteristic load-carrying capacity for a contact area with screws with a full thread at an angle α to the grain of $45^{\circ} \le \alpha \le 90^{\circ}$ shall be calculated from:

$$F_{90,Rk} = min \begin{cases} k_{c,90} \cdot B \cdot \ell_{ef,1} \cdot f_{c,90,k} + n \cdot F_{ax,Rk} \\ B \cdot \ell_{ef,2} \cdot f_{c,90,k} \end{cases}$$

Where

F_{90,Rk} Load-carrying capacity of reinforced contact area [N]

 $k_{c.90}$ factor for compression perpendicular to the grain according to EN 1995-1-1

B bearing width [mm]

 $\ell_{ef.1}$ effective length of contact area according to EN 1995-1-1 [mm]

f_{c.90,k} characteristic compressive strength perpendicular to the grain [N/mm²]

n number of reinforcement screws, $n = n_0 \cdot n_{90}$

number of reinforcement screws arranged in a row parallel to the grain

number of reinforcement screws arranged in a row perpendicular to the grain

F_{ax,Rk} characteristic compressive capacity [N]

 $\ell_{ef,2}$ effective distribution length in the plane of the screw tips [mm]

 $\ell_{ef,2} = \ell_{ef} + (n_0 - 1) \cdot a_1 + \min(\ell_{ef}; a_{3,c})$

for end-bearings [mm]

 $\ell_{\text{ef,2}} = 2 \cdot \ell_{\text{ef}} + (n_0 - 1) \cdot a_1 \text{ for centre-bearings [mm]}$

 $\ell_{\rm ef}$ point side penetration length [mm]

a₁ spacing parallel to the grain [mm]

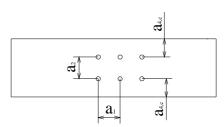
a_{3,c} end distance [mm]

Reinforcing screws or threaded rods for wood-based panels are not covered by this European Technical Approval.

Reinforced centre-bearing

H component height [mm]

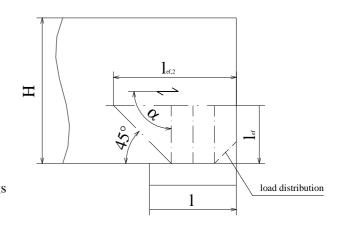
B bearing width [mm]


 $\ell_{\rm ef}$ point side penetration length [mm]

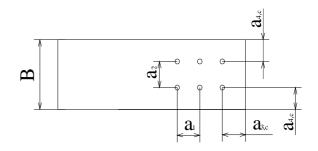
 $\ell_{ef,2}$ effective distribution length in the plane of the screw tips [mm]

= $2 \cdot \ell_{ef} + (n_0 - 1) \cdot a_1$ for centre-bearings

grain direction screw axis
$$45^{\circ} \le \alpha \le 90^{\circ}$$


Reinforced end-bearing

H component height [mm]


B bearing width [mm]

 $\ell_{\rm ef}$ point side penetration length [mm]

 $\begin{array}{ll} \ell_{ef,2} & \quad \text{effective distribution length in the plane} \\ & \quad \text{of the screw tips [mm]} \\ & \quad = \ell_{ef} + (n_0 \text{ - } 1) \cdot a_1 + \text{min } (\ell_{ef}; \, a_{3,c}) \text{ for end-bearings} \end{array}$

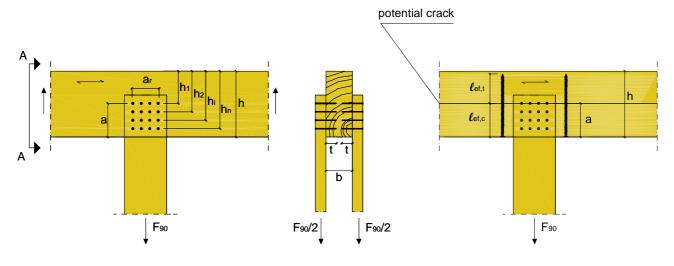
grain direction screw axis
$$45^{\circ} \le \alpha \le 90^{\circ}$$

$$\begin{array}{l} a_1 & \geq 5 \cdot d \\ a_2 & \geq 2, 5 \cdot d \\ a_{3,c} \geq 5 \cdot d \\ a_{4,c} \geq 4 \cdot d \\ & \geq 3 \cdot d \\ a_1 \cdot a_2 \geq 25 \cdot d^2 \end{array} \quad \text{for screws with CUT or 4CUT drill tip}$$

Annex D Tensile reinforcement perpendicular to grain

Unless specified otherwise in national provisions that apply at the installation site, the axial capacity of a reinforcement of a timber member loaded by a connection force perpendicular to the grain shall fulfil the following condition:

$$\frac{\left[1 - 3 \cdot \alpha^2 + 2 \cdot \alpha^3\right] \cdot F_{90,d}}{F_{ax,Rd}} \le 1$$


Where

F_{90,d} Design value of the force component perpendicular to the grain,

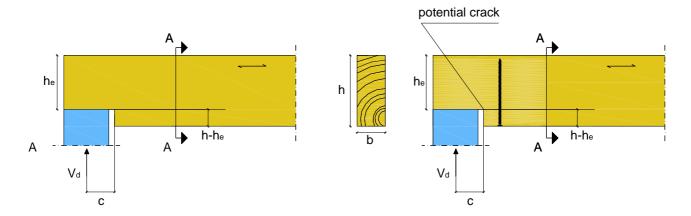
 $\alpha = a/h$

h = member depth

 $F_{ax,Rd}$ Minimum of the design values of the withdrawal capacity and the tensile capacity of the reinforcing screws or threaded rods where ℓ_{ef} is the smaller value of the penetration depth below or above the potential crack

Unless specified otherwise in national provisions that apply at the installation site, the axial capacity of a reinforcement of a notched beam support shall fulfil the following condition:

$$\frac{1,3 \cdot V_d \cdot \left[3 \cdot \left(1-\alpha\right)^2 - 2 \cdot \left(1-\alpha\right)^3\right]}{F_{av,Rd}} \le 1$$


Where

V_d Design value of the shear force,

 $\alpha \qquad = h_e/h$

h = member depth

 $F_{ax,Rd}$ Minimum of the design values of the withdrawal capacity and the tensile capacity of the reinforcing screws or threaded rods where ℓ_{ef} is the smaller value of the penetration depth below or above the potential crack

Unless specified otherwise in national provisions that apply at the installation site, the axial capacity of a reinforcement of a hole in a beam shall fulfil the following condition:

$$\frac{F_{t,V,d} + F_{t,M,d}}{F_{ax,Rd}} \le 1$$

Where

 $F_{t,V,d}$ Design value of the force perpendicular to the grain due to shear force:

$$F_{t,V,d} = \frac{V_d \cdot h_d}{4 \cdot h} \cdot \left[3 - \frac{h_d^2}{h^2} \right]$$

V_d Design value of the member shear force at the hole end,

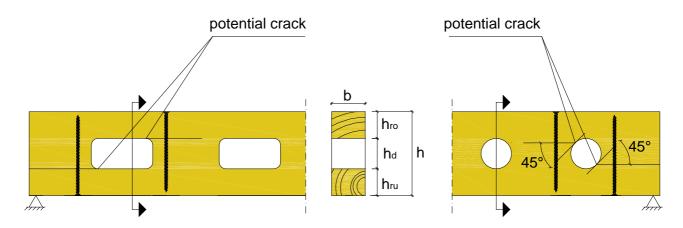
h = member depth

h_d = hole depth for rectangular holes

 $h_d = 70 \%$ of hole diameter for circular holes

F_{t,M,d} Design value of the force perpendicular to the grain due to bending moment:

$$F_{t,M,d} = 0.008 \cdot \frac{M_d}{h_m}$$


M_d Design value of the member bending moment at the hole end,

 $h_r = min (h_{ro}; h_{ru})$ for rectangular holes

 $h_r = min(h_{ro}; h_{ru}) + 0.15 \cdot h_d$ for circular holes

 $F_{ax,Rd}$ Minimum of the design values of the withdrawal capacity and the tensile capacity of the reinforcing screws or threaded rods where ℓ_{ef} is the smaller value of the penetration depth below or above the potential crack.

It shall be emphasized that beside the reinforcement with screws also a strength verification is required for the shear strength of the timber in the vicinity of the hole

Annex E Shear reinforcement

Unless specified otherwise in national provisions that apply at the installation site, the shear stress in reinforced areas of timber members with a stress component parallel to the grain shall fulfil the following condition:

$$\tau_d \leq \frac{f_{v,d} \cdot k_\tau}{\eta_H}$$

Where:

 τ_d is the design shear stress disregarding the reinforcement;

 $f_{v,d}$ is the design shear strength;

$$k_{\tau} = 1 - 0.46 \cdot \sigma_{90,d} - 0.052 \cdot \sigma_{90,d}^2$$

 σ_{90d} is the design stress perpendicular to the grain (negative value for compression);

$$\sigma_{90,d} = \frac{F_{ax,d}}{\sqrt{2} \cdot b \cdot a_1}$$

$$F_{ax,d} = \frac{\sqrt{2} \cdot (1 - \eta_H) \cdot V_d \cdot a_1}{h}$$

$$\eta_{H} = \frac{G \cdot b}{G \cdot b + \frac{1}{2 \cdot \sqrt{2} \left(\frac{6}{\pi \cdot d \cdot h \cdot k_{ax}} + \frac{a_{1}}{EA_{S}} \right)}}$$

V_d is the design shear force;

G is the shear modulus of the timber member, $G = 650 \text{ N/mm}^2$,

b is the width of the timber member in mm,

d is the outer thread diameter in mm, $(d_1$ in the drawings in the annex)

h is the depth of the timber member in mm,

 k_{ax} is the connection stiffness between rod or screw and timber member in N/mm³,

 $k_{ax} = 5 \text{ N/mm}^3$ for threaded rods d = 16 mm, $k_{ax} = 12.5 \text{ N/mm}^3$ for self-tapping screws d = 8 mm,

a₁ is the spacing parallel to the grain of the rods or screws arranged in one row in mm,

EA_s is the axial stiffness of one rod or screw,

$$EA_S = \frac{E \cdot \pi \cdot d_2^2}{4} = 165.000 d_2^2$$
,

d₂ is the inner thread diameter of the rod or screw,

 $d_2 = 12$ mm for threaded rods d = 16 mm, $d_2 = 5$ mm for screws d = 8 mm.

The axial capacity of a threaded rod or screw shall fulfil the following condition:

$$\frac{F_{ax,d}}{F_{ax,d}} \le 1$$

where: $F_{ax,Rd}$ Minimum of the design values of the withdrawal capacity and the tensile capacity of the reinforcing rods or screws. The effective penetration length is 50 % of the threaded length

Outside reinforced areas (shaded area in Figure E.1) the shear design shall fulfil the conditions for unreinforced members.

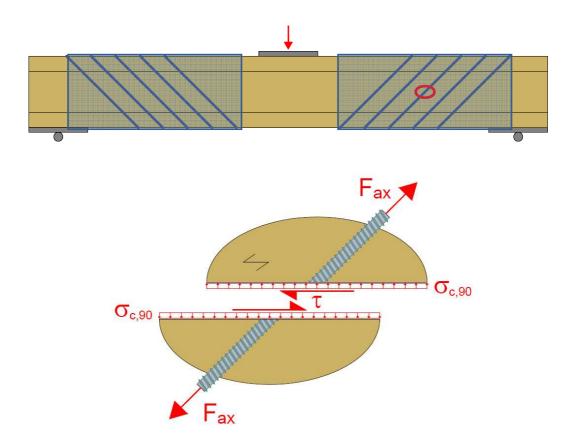


Figure E.1: Timber member with shear reinforcement; shaded areas: reinforced areas

Annex F

Thermal insulation material on top of rafters

SPAX screws with an outer thread diameter 6 mm \leq d \leq 12 mm may be used for the fixing of Thermal insulation material on top of rafters.

The thickness of the insulation shall not exceed 400 mm. The rafter insulation must be placed on top of solid timber or glued laminated timber rafters and be fixed by battens arranged parallel to the rafters or by woodbased panels on top of the insulation layer. The insulation of vertical facades is also covered by the rules given here.

Screws must be screwed in the rafter through the battens or panels and the insulation without pre-drilling in one sequence.

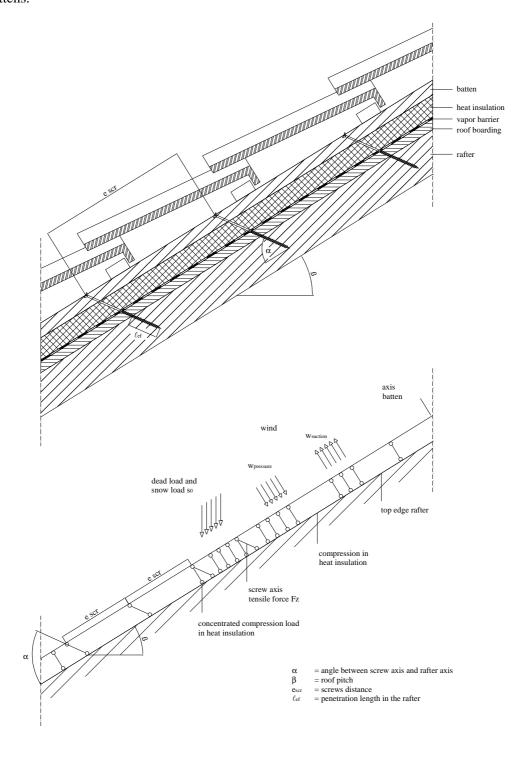
The angle α between the screw axis and the grain direction of the rafter should be between 30° and 90°.

The rafter consists of solid timber (softwood) according to EN 14081-1, glued laminated timber according to EN 14080, cross-laminated timber, or laminated veneer lumber according to EN 14374 or to European Technical Approval or similar glued members according to European Technical Approval and has a minimum width of 60 mm.

The battens must be from solid timber (softwood) according to EN 338:2003-04. The minimum thickness t and the minimum width b of the battens is given as follows:

Alternatively to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636, particleboard according to EN 312, oriented strand board OSB/3 and OSB/4 according to EN 300 or European Technical Approval and solid wood panels according to EN 13353 may be used. This only applies to the system with parallel inclined screws.

The insulation must comply with a European Technical Approval.


Friction forces shall not be considered for the design of the characteristic axial capacity of the screws.

The anchorage of wind suction forces as well as the bending stresses of the battens or the boards, respectively, shall be considered in design. Additional screws perpendicular to the grain of the rafter (angle $\alpha = 90^{\circ}$) may be arranged if necessary.

The maximum screw spacing is $e_S = 1,75$ m.

Thermal insulation material on rafters with parallel inclined screws Mechanical model

The system of rafter, Thermal insulation material on top of rafter and battens parallel to the rafter may be considered as a beam on elastic foundation. The batten represents the beam, and the Thermal insulation material on top of the rafter the elastic foundation. The minimum compression stress of the Thermal insulation material at 10 % deformation, measured according to EN 826², shall be $\sigma_{(10\,\%)}=0.05$ N/mm². The batten is loaded perpendicular to the axis by point loads F_b . Further point loads F_s are from the shear load of the roof due to dead and snow load, which are transferred from the screw heads into the battens.

² EN 826:1996

Design of the battens

The bending stresses are calculated as:

$$M = \frac{(F_b + F_s) \cdot \ell_{char}}{4}$$

Where

$$\ell_{char} = characteristic \ length \ \ \ell_{char} = \sqrt[4]{\frac{4 \cdot EI}{w_{ef} \cdot K}}$$

EI = bending stiffness of the batten

K = coefficient of subgrade

w_{ef} = effective width of the Thermal insulation material

 F_b = Point loads perpendicular to the battens

 F_s = Point loads perpendicular to the battens, load application in the area of the screw heads

The coefficient of subgrade K may be calculated from the modulus of elasticity $E_{\rm HI}$ and the thickness $t_{\rm HI}$ of the Thermal insulation material if the effective width $w_{\rm ef}$ of the Thermal insulation material under compression is known. Due to the load extension in the Thermal insulation material the effective width $w_{\rm ef}$ is greater than the width of the batten or rafter, respectively. For further calculations, the effective width $w_{\rm ef}$ of the Thermal insulation material may be determined according to:

$$w_{ef} = w + t_{HI} / 2$$

where

w = minimum width of the batten or rafter, respectively

t_{HI} = thickness of the Thermal insulation material

$$K = \frac{E_{HI}}{t_{HI}}$$

The following condition shall be satisfied:

$$\frac{\sigma_{m,d}}{f_{m,d}} = \frac{M_d}{W \cdot f_{m,d}} \le 1$$

For the calculation of the section modulus W the net cross section has to be considered.

The shear stresses shall be calculated according to:

$$V = \frac{(F_b + F_s)}{2}$$

The following condition shall be satisfied:

$$\frac{\tau_d}{f_{v,d}} = \frac{1.5 \cdot V_d}{A \cdot f_{v,d}} \le 1$$

For the calculation of the cross section area the net cross section has to be considered.

Design of the Thermal insulation material

The compressive stresses in the Thermal insulation material shall be calculated according to:

$$\sigma = \frac{1.5 \cdot F_b + F_s}{2 \cdot \ell_{char} \cdot w}$$

The design value of the compressive stress shall not be greater than 110 % of the compressive stress at 10 % deformation calculated according to EN 826.

Design of the screws

The screws are loaded predominantly axially. The axial tension force in the screw may be calculated from the shear loads of the roof R_s :

$$T_{\rm S} = \frac{R_{\rm S}}{\cos \alpha}$$

The load-carrying capacity of axially loaded screws is the minimum design value of the axial withdrawal capacity of the threaded part of the screw, the head pull-through capacity of the screw and the tensile capacity of the screw.

In order to limit the deformation of the screw head for Thermal insulation material thicknesses over 200 mm or with compressive strength below 0.12 N/mm^2 , respectively, the axial withdrawal capacity of the screws shall be reduced by the factors k_1 and k_2 :

$$F_{ax,\alpha,Rd} = min \left\{ \frac{f_{ax,d} \cdot d \cdot \ell_{ef} \cdot k_1 \cdot k_2}{1.2 \cdot cos^2 \alpha + sin^2 \alpha} \cdot \left(\frac{\rho_k}{350} \right)^{0.8}; f_{head,d} \cdot d_h^2 \cdot \left(\frac{\rho_k}{350} \right)^{0.8}; \frac{f_{tens,k}}{\gamma_{M2}} \right\} \text{ for SPAX screws with partial thread}$$

$$F_{ax,\alpha,\text{Rd}} = \text{min} \left\{ \begin{aligned} &\frac{f_{ax,d} \cdot d \cdot \ell_{ef} \cdot k_1 \cdot k_2}{1,2 \cdot \cos^2 \alpha + \sin^2 \alpha} \cdot \left(\frac{\rho_k}{350}\right)^{0,8} \\ &\max \left\{ f_{head,d} \cdot d_h^2; \frac{f_{ax,d} \cdot d \cdot \ell_{ef,b} \cdot k_1 \cdot k_2}{1,2 \cdot \cos^2 \alpha + \sin^2 \alpha} \right\} \cdot \left(\frac{\rho_k}{350}\right)^{0,8} \end{aligned} \right\} \quad \text{for SPAX screws with full thread}$$

where:

 $f_{ax,d}$ design value of the axial withdrawal parameter of the threaded part of the screw in the rafter or batten, $f_{ax,d}$ does not apply for wood-based panels except plywood, LVL or solid wood panels

d outer thread diameter of the screw, $(d_1 \text{ in the drawings in the annex})$

 ℓ_{ef} Point side penetration length of the threaded part of the screw in the rafter, $l_{ef} \geq 40$ mm

 $\ell_{\text{ef,b}}$ Length of the threaded part in the batten including the head for tensile and excluding the head for compressive force [mm]

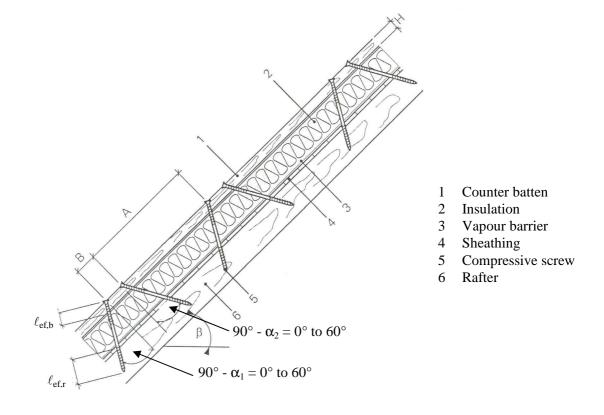
 α Angle between grain and screw axis ($\alpha > 30^{\circ}$)

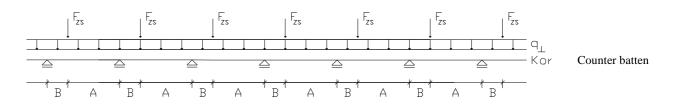
 ρ_k characteristic density of the wood-based member [kg/m³]

 $f_{\text{head,d}}$ design value of the head pull-through capacity of the screw

 d_h head diameter(d_k in the drawings in the annex) $f_{tens,k}$ characteristic tensile capacity of the screw

 γ_{M2} partial factor according to EN 1993-1-1 or to the particular national annex


 $k_1 \qquad \qquad \min \{1; 220/t_{HI}\} \\ k_2 \qquad \qquad \min \{1; \sigma_{10\%}/0,12\}$


t_{HI} thickness of the Thermal insulation material [mm]

 $\sigma_{10\%}$ compressive stress of the Thermal insulation material under 10 % deformation [N/mm²]

If equation k_1 and k_2 are considered, the deflection of the battens does not need to be considered. Alternatively to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636 or an ETA or national provisions that apply at the installation site, particle board according to EN 312 or an ETA or national provisions that apply at the installation site, oriented strand board according to EN 300 or an ETA or national provisions that apply at the installation site and solid wood panels according to EN 13353 or an ETA or national provisions that apply at the installation site or cross laminated timber according to an ETA may be used.

Thermal insulation material on rafters with alternatively inclined screws

Mechanical model

Depending on the screw spacing and the arrangement of tensile and compressive screws with different inclinations the battens are loaded by significant bending moments. The bending moments are derived based on the following assumptions:

- The tensile and compressive loads in the screws are determined based on equilibrium conditions from the actions parallel and perpendicular to the roof plane.

 These actions are constant line loads q₁ and q₁₁.
- The screws act as hinged columns supported 10 mm within the batten or rafter, respectively. The effective column length consequently equals the length of the screw between batten and rafter plus 20 mm.
- The batten is considered as a continuous beam with a constant span $\ell = A + B$. The compressive screws constitute the supports of the continuous beam while the tensile screws transfer concentrated loads perpendicular to the batten axis.

The screws are predominantly loaded in withdrawal or compression, respectively. The screw's normal forces are determined based on the loads parallel and perpendicular to the roof plane:

$$\begin{split} &\text{Compressive screw:} & F_{c,Ed} = (A+B) \cdot \left(-\frac{q_{II}}{\cos\alpha_1 + \sin\alpha_1 / \tan\alpha_2} - \frac{q_{\perp} \cdot \sin(90^\circ - \alpha_2)}{\sin(\alpha_1 + \alpha_2)} \right) \\ &\text{Tensile screw:} & F_{t,Ed} = (A+B) \cdot \left(\frac{q_{II}}{\cos\alpha_2 + \sin\alpha_2 / \tan\alpha_1} - \frac{q_{\perp} \cdot \sin(90^\circ - \alpha_1)}{\sin(\alpha_1 + \alpha_2)} \right) \end{split}$$

The bending moments in the batten follow from the constant line load q_{\perp} and the load components perpendicular to the batten from the tensile screws. The span of the continuous beam is (A+B). The load component perpendicular to the batten from the tensile screw is:

$$F_{ZS,Ed} = (A+B) \cdot \left(\frac{q_{II}}{1/\tan\alpha_1 + 1/\tan\alpha_2} - \frac{q_{\perp} \cdot \sin(90^\circ - \alpha_1) \cdot \sin\alpha_2}{\sin(\alpha_1 + \alpha_2)} \right)$$

Where:

q_{II} Constant line load parallel to batten

 q_{\perp} Constant line load perpendicular to batten

 α_1 Angle between compressive screw axis and grain direction

 α_2 Angle between tensile screw axis and grain direction

A positive value for F_{ZS} means a load towards the rafter, a negative value a load away from the rafter.

Design of the screws

The load-carrying capacity of the screws shall be calculated as follows:

Screws loaded in tension:

$$F_{ax,\alpha,Rd} = min \left\{ \frac{f_{ax,d} \cdot d \cdot \ell_{ef,b}}{1.2 \cdot cos^2 \alpha_2 + sin^2 \alpha_2} \cdot \left(\frac{\rho_{b,k}}{350} \right)^{0.8}; \frac{f_{ax,d} \cdot d \cdot \ell_{ef,r}}{1.2 \cdot cos^2 \alpha_2 + sin^2 \alpha_2} \cdot \left(\frac{\rho_{r,k}}{350} \right)^{0.8}; \frac{f_{tens,k}}{\gamma_{M2}} \right\}$$

Screws loaded in compression:

$$F_{ax,\alpha,Rd} = min \left\{ \frac{f_{ax,d} \cdot d \cdot \ell_{ef,b}}{1.2 \cdot \cos^2 \alpha_l + \sin^2 \alpha_l} \cdot \left(\frac{\rho_{b,k}}{350} \right)^{0.8}; \frac{f_{ax,d} \cdot d \cdot \ell_{ef,r}}{1.2 \cdot \cos^2 \alpha_l + \sin^2 \alpha_l} \cdot \left(\frac{\rho_{r,k}}{350} \right)^{0.8}; \frac{\kappa_c \cdot N_{pl,k}}{\gamma_{M1}} \right\}$$

where:

 $f_{ax,d}$ design value of the axial withdrawal parameter of the threaded part of the screw in the rafter or batten, $f_{ax,d}$ does not apply for wood-based panels except plywood, LVL or solid wood panels

d outer thread diameter of the screw, $(d_1$ in the drawings in the annex)

 $\ell_{\text{ef,b}}$ penetration length of the threaded part of the screw in the batten

 $\ell_{\text{ef.r}}$ penetration length of the threaded part of the screw in the rafter, $l_{\text{ef}}\!\geq\!40$ mm

 $\rho_{bk} \qquad \qquad \text{characteristic density of the batten } [kg/m^3]$

 ρ_{rk} characteristic density of the rafter [kg/m³]

 α angle α_1 (compression) or α_2 (tension) between screw axis and grain direction,

 $30^{\circ} \le \alpha_1 \le 90^{\circ}, 30^{\circ} \le \alpha_2 \le 90^{\circ}$

 $f_{tens,k}$ characteristic tensile capacity of the screw

 γ_{M1}, γ_{M2} partial factor according to EN 1993-1-1 or to the particular national annex

 $\kappa_c \cdot N_{\text{pl,k}}$ Buckling capacity of the screw

Page 84 of 84 of European Technical Approval no. ETA-12/0114

Free	Carbon steel				Stainless steel	
screw	6,0 mm	8,0 mm	10,0 mm	12,0 mm	10,0 mm	12,0 mm
length [mm]	$\kappa_{c} \cdot N_{pl,k} [kN]$					
≤ 100	1,12	2,79	6,09	12,0	5,22	9,68
120	0,85	2,12	4,68	9,39	4,16	7,97
140	0,66	1,66	3,70	7,50	3,36	6,58
160	0,53	1,34	2,99	6,10	2,76	5,48
180	0,43	1,10	2,48	5,06	2,30	4,62
200		0,92	2,07	4,26	1,94	3,93
220		0,78	1,76	3,65	1,66	3,38
240		0,67	1,51	3,14	1,44	2,94
260		0,58	1,32	2,73	1,26	2,58
280		0,51	1,15	2,40	1,11	2,28
300		0,45	1,02	2,13	0,98	2,02
320		0,40	0,91	1,90	0,88	1,82
340		0,36	0,82	1,70	0,79	1,63
360		0,32	0,73	1,53	0,71	1,48
380		0,29	0,67	1,39	0,65	1,34
400		0,26	0,61	1,27	0,59	1,22
420		0,24	0,55	1,16	0,54	1,12
440		0,22	0,51	1,06	0,49	1,03
460		0,20	0,47	0,98	0,46	0,95
480		0,19	0,43	0,91	0,42	0,88